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SYMMETRY
Symmetry is one of the ideas by which man
through the ages has tried to comprehend
and create order, beauty, and perfection.

Starting from the somewhat vague notion

of symmetry = harmony of proportions, this

book gradually develops first the geometric

concept of symmetry in its several forms

as bilateral, translator^, rotational, orna-

mental and crystallographic symmetry, and

finally rises to the general abstract mathe-

matical idea underlying all these special

forms.

Professor Weyl on the one hand displays

the great variety of applications of the prin-

ciple of symmetry in the arts, in inorganic

and organic nature, and on the other hand

he clarifies step by step the philosophical-

mathematical significance of the idea of

symmetry. The latter purpose makes it

necessary for the reader to confront the

notions and theories of symmetry and rela-

tivity, while a wealth of illustrations sup-

porting the text help to accomplish the

former.

This book is semi-popular in character.

It does not shun mathematics, but detailed

treatment of most of the problems it deals

with is beyond its scope.

The late Professor Weyl was world

famous for his contributions to mathe-

matics and the philosophy of science. In

this book his penetrating mathematical

insight illumines and transforms the worlds

of nature and of art.
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PREFACE

AND BIBLIOGRAPHICAL REMARKS

Starting from the somewhat vague notion

of symmetry = harmony of proportions,

these four lectures gradually develop first the

geometric concept of symmetry in its several

forms, as bilateral, translatory, rotational,

ornamental and crystallographic symmetry,

etc., and finally rise to the general idea under-

lying all these special forms, namely that of

invariance of a configuration of elements

under a group of automorphic transforma-

tions. I aim at two things: on the one hand

to display the great variety of applications

of the principle of symmetry in the arts, in

inorganic and organic nature, on the other

hand to clarify step by step the philosophico-

mathematical significance of the idea of sym-

metry. The latter purpose makes it neces-

sary to confront the notions and theories of

symmetry and relativity, while numerous

illustrations supporting the text help to

accomplish the former.

As readers of this book I had a wider circle

in mind than that of learned specialists. It

does not shun mathematics (that would defeat

its purpose), but detailed treatment of most

of the problems it deals with, in particular

complete mathematical treatment, is beyond

its scope. To the lectures, which reproduce

in slightly modified version the Louis Clark

Vanuxem Lectures given by the author at

Princeton University in February 1951, two

appendices containing mathematical proofs

have been added.

Other books in the field, as for instance

F. M. Jaeger's classical Lectures on the principle



of symmetry and its applications in natural science

(Amsterdam and London, 1917), or the

much smaller and more recent booklet by

Jacque Nicolle, La symetrie et ses applications

(Paris, Albin Michel, 1950) cover only part

of the material, though in a more detailed

fashion. Symmetry is but a side-issue in

D'Arcy Thompson's magnificent work On
growth and form (New edition, Cambridge,
Engl., and New York, 1948). Andreas
Speiser's Theorie der Gruppen von endlicher

Ordnung (3. Aufl. Berlin, 1937) and other

publications by the same author are impor-

tant for the synopsis of the aesthetic and
mathematical aspects of the subject. Jay
Hambidge's Dynamic symmetry (Yale Uni-
versity Press, 1920) has little more than the

name in common with the present book. Its

closest relative is perhaps the July 1949 num-
ber on symmetry of the German periodical

Studium Generale (Vol. 2, pp. 203-278: quoted

as Studium Generale).

A complete list of sources for the illustra-

tions is to be found at the end of the book.

To the Princeton University Press and its

editors I wish to express warm thanks for the

inward and outward care they have lavished

on this little volume; to the authorities of

Princeton University no less sincere thanks

for the opportunity they gave me to deliver

this swan song on the eve of my retirement

from the Institute for Advanced Study.

Hermann Weyl
Zurich

December 1951
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BILATERAL SYMMETRY

If i am not mistaken the word symmetry is

used in our everyday language in two mean-
ings. In the one sense symmetric means
something like well-proportioned, well-bal-

anced, and symmetry denotes that sort of con-

cordance of several parts by which they inte-

grate into a whole. Beauty is bound up with

symmetry. Thus Polykleitos, who wrote a

book on proportion and whom the ancients

praised for the harmonious perfection of his

sculptures, uses the word, and Diirer follows

him in setting down a canon of proportions

for the human figure. l In this sense the idea

is by no means restricted to spatial objects;

the synonym "harmony" points more toward

its acoustical and musical than its geometric

applications. Ebenmass is a good German
equivalent for the Greek symmetry; for like

this it carries also the connotation of "middle

1 Diirer, Vier Biicher von menschlicher Proportion, 1528.

To be exact, Diirer himself does not use the word

symmetry, but the "authorized" Latin translation by

his friend Joachim Camerarius (1532) bears the title

De symmetria parlium. To Polykleitos the statement is

ascribed (^epl fie\oiroiiK<i>v, iv, 2) that "the employment

of a great many numbers would almost engender

correctness in sculpture." See also Herbert Senk, Au
sujet de l'expression ovunirpia dans Diodore i, 98,

5-9, in Chronique d'EgypU 26 (1951), pp. 63-66.

Vitruvius defines: "Symmetry results from propor-

tion . . . Proportion is the commensuration of the

various constituent parts with the whole." For a

more elaborate modern attempt in the same direction

see George David Birkhoff, Aesthetic measure, Cam-
bridge, Mass., Harvard University Press 1933, and the

lectures by the same author on "A mathematical

theory of aesthetics and its applications to poetry

and music," Rice Institute Pamphlet, Vol. 19 (July,

1932), pp. 189-342.



measure," the mean toward which the

virtuous should strive in their actions accord-

ing to Aristotle's Nicomachean Ethics, and

which Galen in De temperamentis describes

as that state of mind which is equally removed

from both extremes: ovp-ntTpov oirtp knarkpov

Tcbv anpoiv airkxtt-

The image of the balance provides a

natural link to the second sense in which the

word symmetry is used in modern times:

bilateral symmetry, the symmetry of left and

right, which is so conspicuous in the structure

of the higher animals, especially the human

body. Now this bilateral symmetry is a

strictly geometric and, in contrast to the

vague notion of symmetry discussed before,

an absolutely precise concept. A body, a

spatial configuration, is symmetric with re-

spect to a given plane E if it is carried into

itself by reflection in E. Take any line / per-

pendicular to E and any point p on /: there

exists one and only one point p' on / which

has the same distance from E but lies on the

other side. The point p' coincides with p only

if/? is on E. Reflection in E is that mapping

p-
? *

FIG. 1

E Reflection in B,

of space upon itself, S: p-> />', that carries

the arbitrary point p into this its mirror image

p' with respect to E. A mapping is defined

whenever a rule is established by which every

point p is associated with an image p'
. An-

other example: a rotation around a perpen-

dicular axis, say by 30°, carries each point p

of space into a point p' and thus defines a

mapping. A figure has rotational symmetry

around an axis / if it is carried into itself by

all rotations around /. Bilateral symmetry

appears thus as the first case of a geometric

concept of symmetry that refers to such

operations as reflections or rotations. Be-

cause of their complete rotational symmetry,

the circle in the plane, the sphere in space

were considered by the Pythagoreans the

most perfect geometric figures, and Aristotle

ascribed spherical shape to the celestial bodies

because any other would detract from their

heavenly perfection. It is in this tradition

that a modern poet2 addresses the Divine

Being as "Thou great symmetry":

God, Thou great symmetry,

Who put a biting lust in me

From whence my sorrows spring,

For all the frittered days

That I have spent in shapeless ways

Give me one perfect thing.

Symmetry, as wide or as narrow as you may

define its meaning, is one idea by which man
through the ages has tried to comprehend and

create order, beauty, and perfection.

The course these lectures will take is as

follows. First I will discuss bilateral sym-

metry in some detail and its role in art as

2 Anna Wickham, "Envoi," from The contemplative

quarry, Harcourt, Brace and Co., 1921.
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well as organic and inorganic nature. Then
we shall generalize this concept gradually,

in the direction indicated by our example of

rotational symmetry, first staying within the

confines of geometry, but then going beyond

these limits through the process of mathe-

matical abstraction along a road that will

finally lead us to a mathematical idea of

great generality, the Platonic idea as it were

behind all the special appearances and ap-

plications of symmetry. To a certain degree

this scheme is typical for all theoretic knowl-

edge: We begin with some general but vague

principle (symmetry in the first sense), then

find an important case where we can give

that notion a concrete precise meaning (bi-

lateral symmetry), and from that case we
gradually rise again to generality, guided

more by mathematical construction and

abstraction than by the mirages of philosophy;

and if we are lucky we end up with an idea

no less universal than the one from which we
started. Gone may be much of its emotional

appeal, but it has the same or even greater

unifying power in the realm of thought and

is exact instead of vague.

I open the discussion on bilateral sym-

metry by using this noble Greek sculpture

from the fourth century b.c, the statue of a

praying boy (Fig. 2), to let you feel as in a

symbol the great significance of this type of

symmetry both for life and art. One may ask

whether the aesthetic value of symmetry de-

pends on its vital value: Did the artist dis-

cover the symmetry with which nature ac-

cording to some inherent law has endowed
its creatures, and then copied and perfected

what nature presented but in imperfect

realizations; or has the aesthetic value of

symmetry an independent source? I am in-

FIG. 2



clined to think with Plato that the mathe-

matical idea is the common origin of both:

the mathematical laws governing nature are

the origin of symmetry in nature, the in-

tuitive realization of the idea in the creative

artist's mind its origin in art; although I am
ready to admit that in the arts the fact of the

bilateral symmetry of the human body in its

outward appearance has acted as an addi-

tional stimulus.

Of all ancient peoples the Sumerians seem

to have been particularly fond of strict bi-

lateral or heraldic symmetry. A typical de-

sign on the famous silver vase of King En-

temena, who ruled in the city of Lagash

FIG. 3

tiS8BB8EBBEgBfflEESBMjagBSBSBBBMBMBgai
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FIG. 4

around 2700 B.C., shows a lion-headed eagle

with spread wings enface, each of whose claws

grips a stag in side view, which in its turn is

frontally attacked by a lion (the stags in the

upper design are replaced by goats in the

lower) (Fig. 3). Extension of the exact sym-

metry of the eagle to the other beasts ob-

viously enforces their duplication. Not much
later the eagle is given two heads facing in

either direction, the formal principle of sym-

metry thus completely overwhelming the

imitative principle of truth to nature. This

heraldic design can then be followed to

Persia, Syria, later to Byzantium, and anyone

who lived before the First World War will

remember the double-headed eagle in the

coats-of-arms of Czarist Russia and the

Austro-Hungarian monarchy.

Look now at this Sumerian picture (Fig. 4).

The two eagle-headed men are nearly but

not quite symmetric; why not? In plane

geometry reflection in a vertical line / can

also be brought about by rotating the plane

in space around the axis / by 180°. If you

look at their arms you would say these two



monsters arise from each other by such rota-

tion; the overlappings depicting their posi-

tion in space prevent the plane picture from

having bilateral symmetry. Yet the artist

aimed at that symmetry by giving both

figures a half turn toward the observer and

also by the arrangement of feet and wings:

the drooping wing is the right one in the

left figure, the left one in the right figure.

FIG

The designs on the cylindrical Babylonian

seal stones are frequendy ruled by heraldic

symmetry. I remember seeing in the collec-

tion of my former colleague, the late Ernst

Herzfeld, samples where for symmetry's sake

not the head, but the lower bull-shaped part

of a god's body, rendered in profile, was

doubled and given four instead of two hind

10

FIG. 6

FIG- 7

legs. In Christian times one may see an

analogy in certain representations of the

Eucharist as on this Byzantine paten (Fig.

5), where two symmetric Christs are facing

the disciples. But here symmetry is not

complete and has clearly more than formal

significance, for Christ on one side breaks

the bread, on the other pours the wine.

Between Sumeria and Byzantium let me
insert Persia: These enameled sphinxes (Fig.

6) are from Darius' palace in Susa built in

11



FIG. 8

the days of Marathon. Crossing the Aegean

we find these floor patterns (Fig. 7) at the

Megaron in Tiryns, late helladic about 1200

B.C. Who believes strongly in historic con-

tinuity and dependence will trace the grace-

ful designs of marine life, dolphin and

octopus, back to the Minoan culture of Crete,

the heraldic symmetry to oriental, in the

last instance Sumerian, influence. Skipping

thousands of years we still see the same influ-

ences at work in this plaque (Fig. 8) from the

altar enclosure in the dome of Torcello,

Italy, eleventh century a.d. The peacocks

drinking from a pine well among vine leaves

are an ancient Christian symbol of immor-

tality, the structural heraldic symmetry is

oriental.

For in contrast to the orient, occidental

art, like life itself, is inclined to mitigate, to

loosen, to modify, even to break strict sym-

metry. But seldom is asymmetry merely the

absence of symmetry. Even in asymmetric

designs one feels symmetry as the norm from

which one deviates under the influence of

forces of non-formal character. I think the

riders from the famous Etruscan Tomb of the

Triclinium at Corneto (Fig. 9) provide a good

example. I have already mentioned repre-

sentations of the Eucharist with Christ dupli-

cated handing out bread and wine. The

central group, Mary flanked by two angels,

in this mosaic of the Lord's Ascension (Fig.

10) in the cathedral at Monreale, Sicily

(twelfth century), has almost perfect sym-

metry. [The band ornament's above and

below the mosaic will demand our attention

in the second lecture.] The principle of

symmetry is somewhat less strictly observed

in an earlier mosaic from San Apollinare in

FIG. 9
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FIG. 10

Ravenna (Fig. 11), showing Christ sur-

rounded by an angelic guard of honor. For

instance Mary in the Monreale mosaic raises

both hands symmetrically, in the orans ges-

ture; here only the right hands are raised.

Asymmetry has made further inroads in the

next picture (Fig. 12), a Byzantine relief

ikon from San Marco, Venice. It is a Deesis,

and, of course, the two figures praying for

mercy as the Lord is about to pronounce the

last judgment cannot be mirror images of

each other; for to the right stands his Virgin

Mother, to the left John the Baptist. You

may also think of Mary and John the

Evangelist on both sides of the cross in

crucifixions as examples of broken symmetry.

FIG. 11

FIG. 12
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Clearly we touch ground here where the

precise geometric notion of bilateral sym-

metry begins to dissolve into the vague notion

of Ausgewogenheit, balanced design with which

we started. "Symmetry," says Dagobert

Frey in an article On the Problem of Symmetry in

Art,
3 "signifies rest and binding, asymmetry

motion and loosening, the one order and law,

the other arbitrariness and accident, the one

formal rigidity and constraint, the other life,

play and freedom." Wherever God or Christ

are represented as symbols for everlasting

truth or justice they are given in the sym-

metric frontal view, not in profile. Probably

for similar reasons public buildings and

houses of worship, whether they are Greek

temples or Christian basilicas and cathedrals,

are bilaterally symmetric. It is, however,

true that not infrequently the two towers of

Gothic cathedrals are different, as for instance

in Chartres. But in practically every case

this seems to be due to the history of the

cathedral, namely to the fact that the towers

were built in different periods. It is under-

standable that a later time was no longer satis-

fied with the design of an earlier period; hence

one may speak here of historic asymmetry.

Mirror images occur where there is a mirror,

be it a lake reflecting a landscape or a glass

mirror into which a woman looks. Nature

as well as painters make use of this motif. I

trust, examples will easily come to your mind.

The one most familiar to me, because I look

at it in my study every day, is Hodlcr's Lake

of Silvaplana.

While we are about to turn from art to

nature, let us tarry a few minutes and first

consider what one may call the mathematical

philosophy of left and right. To the scientific

3 Studium Generale, p. 276.
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mind there is no inner difference, no polarity

between left and right, as there is for instance

in the contrast of male and female, or of the

anterior and posterior ends of an animal. It

requires an arbitrary act of choice to deter-

mine what is left and what is right. But

after it is made for one body it is determined

for every body. I must try to make this a

little clearer. In space the distinction of left

and right concerns the orientation of a screw.

If you speak of turning left you mean that the

sense in which you turn combined with the

upward direction from foot to head of your

body forms a left screw. The daily rotation

of the earth together with the direction of its

axis from South to North Pole is a left screw,

it is a right screw if you give the axis the

opposite direction. There are certain crystal-

line substances called optically active which

betray the inner asymmetry of their constitu-

tion by turning the polarization plane of

polarized light sent through them either to

the left or to the right; by this, of course, we
mean that the sense in which the plane rotates

while the light travels in a definite direction,

combined with that direction, forms a left

screw (or a right one, as the case may be).

Hence when we said above and now repeat

in a terminology due to Leibniz, that left

and right are indiscernible, we want to express

that the inner structure of space does not

permit us, except by arbitrary choice, to dis-

tinguish a left from a right screw.

I wish to make this fundamental notion still

more precise, for on it depends the entire

theory of relativity, which is but another

aspect of symmetry. According to Euclid

one can describe the structure of space by a

number of basic relations between points,

such as ABC lie on a straight line, ABCD lie

17



in a plane, AB is congruent CD. Perhaps the

best way of describing the structure of space

is the one Helmholtz adopted: by the single

notion of congruence of figures. A mapping S

of space associates with every point p a point

p''-p—*P'' A Pair of maPPinSs $* s''-p—*P'>

p> _> p y
f which the one is the inverse of the

other, so that if S carries p into p' then S'

FIG. 13

carries p' back into p and vice versa, is spoken

of as a pair of one-to-one mappings or trans-

formations. A transformation which preserves

the structure of space—and if we define this

structure in the Helmholtz way, that would

mean that it carries any two congruent figures

into two congruent ones—is called an auto-

morphism by the mathematicians. Leibniz

recognized that this is the idea underlying

the geometric concept of similarity. An

automorphism carries a figure into one that

in Leibniz' words is "indiscernible from it if

each of the two figures is considered by itself."

What we mean then by stating that left and

right are of the same essence is the fact that

reflection in a plane is an automorphism.

Space as such is studied by geometry. But

space is also the medium of all physical oc-

currences. The structure of the physical

18

world is revealed by the general laws of na-

ture. They are formulated in terms of cer-

tain basic quantities which are functions in

space and time. We would conclude that the

physical structure of space "contains a

screw," to use a suggestive figure of speech, if

these laws were not invariant throughout with

respect to reflection. Ernst Mach tells of the

intellectual shock he received when he learned

as a boy that a magnetic needle is deflected in

a certain sense, to the left or to the right, if

suspended parallel to a wire through which

an electric current is sent in a definite direc-

tion (Fig. 14). Since the whole geometric

and physical configuration, including the

electric current and the south and north poles

of the magnetic needle, to all appearances,

are symmetric with respect to the plane E
laid through the wire and the needle, the

needle should react like Buridan's ass between

19



equal bundles of hay and refuse to decide

between left and right, just as scales of equal

arms with equal weights neither go down on

their left nor on their right side but stay

horizontal. But appearances are sometimes

deceptive. Young Mach's dilemma was the

result of a too hasty assumption concerning

the effect of reflection in E on the electric

current and the positive and negative mag-

netic poles of the needle: while we know a

priori how geometric entities fare under

reflection, we have to learn from nature how

the physical quantities behave. And this is

what we find : under reflection in the plane E
the electric current preserves its direction, but

the magnetic south and north poles are inter-

changed. Of course this way out, which re-

establishes the equivalence of left and right, is

possible only because of the essential equality

of positive and negative magnetism. All

doubts were dispelled when one found that

the magnetism of the needle has its origin in

molecular electric currents circulating around

the needle's direction; it is clear that under

reflection in the plane E such currents

change the sense in which they flow.

The net result is that in all physics nothing

has shown up indicating an intrinsic differ-

ence of left and right. Just as all points and

all directions in space are equivalent, so are

left and right. Position, direction, left and

right are relative concepts. In language tinged

with theology this issue of relativity was dis-

cussed at great length in a famous controversy

between Leibniz and Clarke, the latter a

clergyman acting as the spokesman for

Newton. 4 Newton with his belief in absolute

4 See G. W. Leibniz, Pkilosophische Schriften, ed.

Gerhardt (Berlin 1875 scq.), vu, pp. 352-440, in

particular Leibniz' third letter, §5.

20

space and time considers motion a proof

of the creation of the world out of God's

arbitrary will, for otherwise it would be in-

explicable why matter moves in this rather

than in any other direction. Leibniz is loath

to burden God with such decisions as lack

"sufficient reason." Says he, "Under the as-

sumption that space be something in itself it

is impossible to give a reason why God should

have put the bodies (without tampering with

their mutual distances and relative positions)

just at this particular place and not some-

where else; for instance, why He should not

have arranged everything in the opposite

order by turning East and West about. If,

on the other hand, space is nothing more than

the spatial order and relation of things then

the two states supposed above, the actual

one and its transposition, are in no way dif-

ferent from each other . . . and therefore it

is a quite inadmissible question to ask why
one state was preferred to the other." By
pondering the problem of left and right Kant

was first led to his conception of space and

time as forms of intuition. 5 Kant's opinion

seems to have been this: If the first creative

act of God had been the forming of a left

hand then this hand, even at the time when
it could be compared to nothing else, had

the distinctive character of left, which can

only intuitively but never conceptually be ap-

prehended. Leibniz contradicts: According

to him it would have made no difference if

God had created a "right" hand first rather

than a "left" one. One must follow the

world's creation a step further before a differ-

ence can appear. Had God, rather than

5 Besides his "Kritik der rcinen Vernunft" see es-

pecially §13 of the Prolegomena zu einer jeden kunftigen

Metaphysik. . .

21



making first a left and then a right hand,

started with a right hand and then formed

another right hand, He would have changed

the plan of the universe not in the first but

in the second act, by bringing forth a hand

which was equally rather than oppositely

oriented to the first-created specimen.

Scientific thinking sides with Leibniz.

Mythical thinking has always taken the con-

trary view as is evinced by its usage of right

and left as symbols for such polar opposites

as good and evil. You need only think of the

double meaning of the word right itself. In

this detail from Michelangelo's famous Crea-

tion of Adam from the Sistine Ceiling (Fig.

15) God's right hand, on the right, touches

life into Adam's left.

People shake right hands. Sinister is the

Latin word for left, and heraldry still speaks

of the left side of the shield as its sinister side.

But sinistrum is at the same time that which

is evil, and in common English only this

figurative meaning of the Latin word sur-

vives. 6 Of the two malefactors who were

crucified with Christ, the one who goes with

Him to paradise is on His right. St. Matthew,

Chapter 25, describes the last judgment as

follows: "And he shall set the sheep on his

right hand but the goats on the left. Then

shall the King say unto them on his right

hand, Come ye, blessed of my Father, in-

herit the Kingdom prepared for you from

the foundation of the world. . . . Then he

shall say also unto them on the left hand,

Depart from me, ye cursed, into everlasting

fire, prepared for the devil and his angels."

6 I am not unaware of the strange fact that as a

terminus technicus in the language of the Roman augurs

sinistrum had just the opposite meaning of propitious.

FIG. 15

I remember a lecture Heinrich Wolfflin

once delivered in Zurich on "Right and left

in paintings"; together with an article on

"The problem of inversion (Umkehrung) in

Raphael's tapistry cartoons," you now find it

printed in abbreviated form in his Gedanken

zur Kunstgeschichte, 1941 . By a number of ex-

amples, as Raphael's Sistine Madonna and

Rembrandt's etching Landscape with the three

trees, Wolfflin tries to show that right in

painting has another Stimmungswert than left.

Practically all methods of reproduction inter-

change left and right, and it seems that former

times were much less sensitive than we are

toward such inversion. (Even Rembrandt

did not hesitate to bring his Descent from

the Cross as a converse etching upon the

market.) Considering that we do a lot more

reading than the people, say, of the sixteenth

century, this suggests the hypothesis that the

22 23



difference pointed out by Wolfflin is connected

with our habit of reading from left to right.

As far as I remember, he himself rejected this

as well as a number of other psychological

explanations put forward in the discussion

after his lecture. The printed text concludes

with the remark that the problem "obviously

has deep roots, roots which reach down to

the very foundations of our sensuous nature."

I for my part am disinclined to take the

matter that seriously. 7

In science the belief in the equivalence of

left and right has been upheld even in the

face of certain biological facts presently to

be mentioned which seem to suggest their

inequivalence even more strongly than does

the deviation of the magnetic needle which

shocked young Mach. The same problem

of equivalence arises with respect to past and

future, which are interchanged by inverting

the direction of time, and with respect to

positive and negative electricity. In these cases,

especially in the second, it is perhaps clearer

than for the pair left-right that a priori evi-

dence is not sufficient to settle the question;

the empirical facts have to be consulted.

To be sure, the role which past and future

play in our consciousness would indicate

their intrinsic difference—the past knowable

and unchangeable, the future unknown and

still alterable by decisions taken now—and

one would expect that this difference has its

basis in the physical laws of nature. But

those laws of which we can boast a reasonably

certain knowledge are invariant with respect
7 Cf. also A. Faistauer, "Links und rechts im

Bilde," Amicis, Jahrbuch der osterreichischen Galerie,

1926, p. 77; Julius v. Schlosser, "Intorno alia lettura

dei quadri," Critica 28, 1930, p. 72; Paul Oppe,

"Right and left in Raphael's cartoons," Journal of

the Warburg and Courtauld Institutes 7, 1944, p. 82.
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to the inversion of time as they are with re-

spect to the interchange of left and right.

Leibniz made it clear that the temporal modi

past and future refer to the causal structure of

the world. Even if it is true that the exact

"wave laws" formulated by quantum physics

are not altered by letting time flow backward,

the metaphysical idea of causation, and with

it the one way character of time, may enter

physics through the statistical interpretation

of those laws in terms of probability and

particles. Our present physical knowledge

leaves us even more uncertain about the

equivalence or non-equivalence of positive

and negative electricity. It seems difficult to

devise physical laws in which they are not

intrinsically alike; but the negative counter-

part of the positively charged proton still re-

mains to be discovered.

This half-philosophical excursion was

needed as a background for the discussion of

the left-right symmetry in nature; we had

to understand that the general organization

of nature possesses that symmetry. But one

will not expect that any special object of na-

ture shows it to perfection. Even so, it is sur-

prising to what extent it prevails. There

must be a reason for this, and it is not far to

seek: a state of equilibrium is likely to be sym-

metric. More precisely, under conditions

which determine a unique state of equilib-

rium the symmetry of the conditions must

carry over to the state of equilibrium. There-

fore tennis balls and stars are spheres; the

earth would be a sphere too if it did not rotate

around an axis. The rotation flattens it at

the poles but the rotational or cylindrical sym-

metry around its axis is preserved. The fea-

ture that needs explanation is, therefore,

not the rotational symmetry of its shape but
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FIG. 16

the deviations from this symmetry as exhibited

by the irregular distribution of land and water

and by the minute crinkles of mountains on

its surface. It is for such reasons that in his

monograph on the left-right problem in

zoology Wilhelm Ludwig says hardly a word

about the origin of the bilateral symmetry

prevailing in the animal kingdom from the

echinoderms upward, but in great detail dis-

cusses all sorts of secondary asymmetries

superimposed upon the symmetrical ground

plan. 8
I quote: "The human body like that

of the other vertebrates is basically built

bilateral-symmetrically. All asymmetries oc-

curring are of secondary character, and the

more important ones affecting the inner

organs are chiefly conditioned by the neces-

sity for the intestinal tube to increase its

surface out of proportion to the growth of

the body, which lengthening led to an asym-

metric folding and rolling-up. And in the

course of phylogenetic evolution these first

asymmetries concerning the intestinal system

with its appendant organs brought about

asymmetries in other organ systems." It is

well known that the heart of mammals is an

asymmetric screw, as shown by the schematic

drawing of Fig. 16.

If nature were all lawfulness then every

phenomenon would share the full symmetry

of the universal laws of nature as formulated

by the theory of relativity. The mere fact

that this is not so proves that contingency is an

essential feature of the world. Clarke in his

controversy with Leibniz admitted the latter's

principle of sufficient reason but added that

the sufficient reason often lies in the mere will

of God. I think, here Leibniz the rationalist

8 W. Ludwig, Rechts-links-Problem im Tierreick und
beim Menschen, Berlin 1932.
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is definitely wrong and Clarke on the right

track. But it would have been more sincere

to deny the principle of sufficient reason al-

together instead of making God responsible

for all that is unreason in the world. On the

other hand Leibniz was right against Newton

and Clarke with his insight into the principle

of relativity. The truth as we see it today is

this: The laws of nature do not determine

uniquely the one world that actually exists,

not even if one concedes that two worlds

arising from each other by an automorphic

transformation, i.e., by a transformation

which preserves the universal laws of nature,

are to be considered the same world.

If for a lump of matter the overall sym-

metry inherent in the laws of nature is

limited by nothing but the accident of its

position P then it will assume the form of a

sphere around the center P. Thus the lowest

forms of animals, small creatures suspended

in water, are more or less spherical. For

forms fixed to the bottom of the ocean the di-

rection of gravity is an important factor, nar-

rowing the set of symmetry operations from all

rotations around the center P to all rotations

about an axis. But for animals capable of

self-motion in water, air, or on land both the

postero-anterior direction in which their

body moves and the direction of gravity are

of decisive influence. After determination of

the antero-posterior, the dorso-ventral, and

thereby of the left-right axes, only the dis-

tinction between left and right remains

arbitrary, and at this stage no higher sym-

metry than the bilateral type can be expected.

Factors in the phylogenetic evolution that

tend to introduce inheritable differences be-

tween left and right are likely to be held in

check by the advantage an animal derives
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from the bilateral formation of its organs of

motion, cilia or muscles and limbs: in case of

their asymmetric development a screw-wise

instead of a straight-forward motion would
naturally result. This may help to explain

why our limbs obey the law of symmetry
more strictly than our inner organs. Aristo-

phanes in Plato's Symposium tells a different

story of how the transition from spherical to

bilateral symmetry came about. Originally,

he says, man was round, his back and sides

forming a circle. To humble their pride and
might Zeus cut them into two and had
Apollo turn their faces and genitals around;

and Zeus has threatened, "If they continue

insolent I will split them again and they

shall hop around on a single leg."

The most striking examples of symmetry
in the inorganic world are the crystals. The
gaseous and the crystalline are two clear-cut

states of matter which physics finds relatively

easy to explain; the states in between these

two extremes, like the fluid and the plastic

states, are somewhat less amenable to theory.

In the gaseous state molecules move freely

around in space with mutually independent

random positions and velocities. In the

crystalline state atoms oscillate about posi-

tions of equilibrium as if they were tied to

them by elastic strings. These positions of

equilibrium form a fixed regular configura-

tion in space. What we mean by regular and
how the visible symmetry of crystals derives

from the regular atomic arrangement will be

explained in a subsequent lecture. While
most of the thirty-two geometrically possible

systems of crystal symmetry involve bilateral

symmetry, not all of them do. Where it

is not involved we have the possibility of

so-called enantiomorph crystals which exist
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in a laevo- and dextro-form, each form being

a mirror image of the other, like left and

right hands. A substance which is optically

active, i.e., turns the plane of polarized light

either left or right, can be expected to crystal-

lize in such asymmetric forms. If the laevo-

form exists in nature one would assume that

the dextro-form exists likewise, and that in

the average both occur with equal fre-

quencies. In 1848 Pasteur made the dis-

covery that when the sodium ammonium salt

of optically inactive racemic acid was recrys-

tallized from an aqueous solution at a lower

temperature the deposit consisted of two

kinds of tiny crystals which were mirror

images of each other. They were carefully

separated, and the acids set free from the

one and the other proved to have the same

chemical composition as the racemic acid,

but one was optically laevo-active, the other

dextro-active. The latter was found to be

identical with the tartaric acid present in

fermenting grapes, the other had never be-

fore been observed in nature. "Seldom,"

says F. M. Jaeger in his lectures On the

principle of symmetry and its applications in natural

science, "has a scientific discovery had such far-

reaching consequences as this one had."

Quite obviously some accidents hard to

control decide whether at a spot of the solu-

tion a laevo- or dextro-crystal comes into

being; and thus in agreement with the sym-

metric and optically inactive character of

the solution as a whole and with the law of

chance the amounts of substance deposited

in the one and the other form at any moment

of the process of crystallization are equal or

very nearly equal. On the other hand na-

ture, in giving us the wonderful gift of grapes

so much enjoyed by Noah, produced only one
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of the forms, and it remained for Pasteur to
produce the other! This is strange indeed.
It is a fact that most of the numerous car-
bonic compounds occur in nature in one,
either the laevo- or the dextro-form only.
The sense in which a snail's shell winds is an
inheritable character founded in its genetic

constitution, as is the "left heart" and the
winding of the intestinal duct in the species

Homo sapiens. This does not exclude that in-

inversions occur, e.g. situs inversus of the intes-

tines ofman occurs with a frequency of about
0.02 per cent; we shall come back to that

later
!

Also the deeper chemical constitution

of our human body shows that we have a
screw, a screw that is turning the same way
in every one of us. Thus our body contains
the dextro-rotatory form of glucose and laevo-
rotatory form offructose. A horrid manifesta-
tion of this genotypical asymmetry is a meta-
bolic disease called phenylketonuria, leading
to insanity, that man contracts when a small
quantity of laevo-phenylalanine is added to
his food, while the dextro-form has no such
disastrous effects. To the asymmetric chem-
ical constitution of living organisms one must
attribute the success of Pasteur's method of
isolating the laevo- and dextro-forms of sub-
stances by means of the enzymatic action of
bacteria, moulds, yeasts, and the like. Thus
he found that an originally inactive solution
of some racemate became gradually laevo-
rotatory if Penicillium glaucum was grown in it.

Clearly the organism selected for its nutri-
ment that form of the tartaric acid molecule
which best suited its own asymmetric chem-
ical constitution. The image of lock and key
has been used to illustrate this specificity of
the action of organisms.

In view of the facts mentioned and in view
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of the failure of all attempts to "activate" by

mere chemical means optically inactive

material, 9
it is understandable that Pasteur

clung to the opinion that the production of

single optically active compounds was the

very prerogative of life. In 1860 he wrote,

"This is perhaps the only well-marked line

of demarkation that can at present be drawn

between the chemistry of dead and living

matter." Pasteur tried to explain his very

first experiment where racemic acid was

transformed by recrystallization into a mix-

ture of laevo- and dextro-tartaric acid by the

action of bacteria in the atmosphere on his

neutral solution. It is quite certain today

that he was wrong; the sober physical ex-

planation lies in the fact that at lower temper-

ature a mixture of the two oppositely active

tartaric forms is more stable than the in-

active racemic form. If there is a difference

in principle between life and death it does not

lie in the chemistry of the material substra-

tum; this has been fairly certain ever since

Wohler in 1828 synthesized urea from purely

mineral material. But even as late as 1898

F. R. Japp in a famous lecture on "Stereo-

chemistry and Vitalism" before the British

Association upheld Pasteur's view in the

modified form: "Only the living organisms,

or the living intelligence with its conception

of symmetry can produce this result (i.e. asym-

metric compounds)." Does he really mean

that it is Pasteur's intelligence that, by devis-

ing the experiment but to its own great sur-

prise, creates the dual tartaric crystals? Japp

continues, "Only asymmetry can beget asym-

9 There is known today one clear instance, the

reaction of nitrocinnaminacid with bromine where

circular-polarized light generates an optically active

substance.
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metry." The truth of that statement I am
willing to admit; but it is of little help since

there is no symmetry in the accidental past

and present set-up of the actual world which
begets the future.

There is however a real difficulty: Why
should nature produce only one of the doub-
lets of so many enantiomorphic forms the
origin of which most certainly lies in living

organisms? Pascual Jordan points to this

fact as a support for his opinion that the be-
ginnings of life are not due to chance events
which, once a certain stage of evolution is

reached, are apt to occur continuously now
here now there, but rather to an event of

quite singular and improbable character,

occurring once by accident and then starting

an avalanche byautocatalytic multiplication.

Indeed had the asymmetric protein molecules
found in plants and animals an independent
origin in many places at many times, then
their laevo- and dextro-varieties should show
nearly the same abundance. Thus it looks

as if there is some truth in the story of Adam
and Eve, if not for the origin of mankind
then for that of the primordial forms of life.

It was in reference to these biological facts

when I said before that if taken at their face

value they suggest an intrinsic difference

between left and right, at least as far as the

constitution of the organic world is concerned.
But we may be sure the answer to our riddle

does not lie in any universal biological laws
but in the accidents of the genesis of the
organismic world . Pascual Jordan shows one
way out; one would like to find a less radical

one, for instance by reducing the asymmetry
of the inhabitants on earth to some inherent,

though accidental, asymmetry of the earth
itself, or of the light received on earth from
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the sun. But neither the earth's rotation nor

the combined magnetic fields of earth and

sun are of immediate help in this regard.

Another possibility would be to assume that

development actually started from an equal

distribution of the enantiomorph forms, but

that this is an unstable equilibrium which

under a slight chance disturbance tumbled

over.

From the phylogenetic problems of left

and right let us finally turn to their onto-

genesis. Two questions arise: Does the first

division of the fertilized egg of an animal into

two cells fix the median plane, so that one

of the cells contains the potencies for its left,

the other for its right half? Secondly what

determines the plane of the first division? I

begin with the second question. The egg of

any animal above the protozoa possesses from

the beginning a polar axis connecting what

develops into the animal and the vegetative

poles of the blastula. This axis together with

the point where the fertilizing spermatozoon

enters the egg determines a plane, and it

would be quite natural to assume that this

is the plane of the first division. And indeed

there is evidence that it is so in many cases.

Present opinion seems to incline toward the

assumption that the primary polarity as well

as the subsequent bilateral symmetry come

about by external factors actualizing poten-

tialities inherent in the genetic constitution.

In many instances the direction of the polar

axis is obviously determined by the attach-

ment of the oozyte to the wall of the ovary,

and the point of entrance of the fertilizing

sperm is, as we said, at least one, and often

the most decisive, of the determining factors

for the median plane. But other agencies

may also be responsible for the fixation of the

33



one and the other. In the sea-weed Fucus

light or electric fields or chemical gradients

determine the polar axis, and in some insects

and cephalopods the median plane appears to

be fixed by ovarian influences before fertiliza-

tion .
• ° The underlying constitution on which

these agencies work is sought by some biolo-

gists in an intimate preformed structure, of

which we do not yet have a clear picture.

Thus Conklin has spoken of a spongioplasmic

framework, others of a cytoskeleton, and as

there is now a strong tendency among bio-

chemists to reduce structural properties to

fibers, so much so that Joseph Needham in

his Terry Lectures on Order and life (1936)

dares the aphorism that biology is largely

the study of fibers, one may expect them to

find that that intimate structure of the egg

consists of a framework of elongated protein

molecules or fluid crystals.

We know a little more about our first ques-

tion whether the first mitosis of the cell di-

vides it into left and right. Because of the

fundamental character of bilateral symmetry

the hypothesis that this is so seems plausible

enough. However, the answer cannot be an

unqualified affirmation. Even if the hypo-

thesis should be true for the normal develop-

ment we know from experiments first per-

formed by Hans Driesch on the sea urchin
10 Julian S. Huxley and G. R. de Beer in their

classical Elements of embryology (Cambridge Uni-
versity Press, 1934) give this formulation (Chapter
xrv, Summary, p. 438): "In the earliest stages, the

egg acquires a unitary organization of the gradient-

field type in which quantitative differentials of one
or more kinds extend across the substance of the egg
in one or more directions. The constitution of the

egg predetermines it to be able to produce a gradient-

field of a particular type; however, the localization

of the gradients is not predetermined, but is brought
about by agencies external to the egg."
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that a single blastomere isolated from its

partner in the two-cell stage develops into a

whole gastrula differing from the normal one

only by its smaller size. Here are Driesch's

famous pictures. It must be admitted that

this is not so for all species. Driesch's dis-

covery led to the distinction between the ac-

tual and the potential destiny of the several

parts of an egg. Driesch himself speaks of

prospective significance (prospektive Bedeu-

tung), as against prospective potency (pros-

pektive Potenz); the latter is wider than the

former, but shrinks in the course of develop-

ment. Let me illustrate this basic point by

another example taken from the determina-

tion of limb-buds of amphibia. According

to experiments performed by R. G. Harrison,

who transplanted discs of the outer wall of

FIG. 17

Experiments on pluripotence in Echinus.

ai and bi. Normal gastrula and normal pluteus.

a2 and b 2 . Half-gastrula and half-pluteus, ex-

pected by Driesch.

a3 and b3. The small but whole gastrula and

pluteus, which he actually obtained.
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the body representing the buds of future
limbs, the antero-posterior axis is determined
at a time when transplantation may still

invert the dorso-ventral and the medio-lateral
axes; thus at this stage the opposites of left and
right still belong to the prospective potencies
of the discs, and it depends on the influence
of the surrounding tissues in which way this

potency will be actualized.

dorsal

FIG. 18
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Driesch's violent encroachment on the
normal development proves that the first

cell division may not fix left and right of the
growing organism for good. But even in

normal development the plane of the first

division may not be the median. The first

stages of cell division have been closely

studied for the worm Ascaris megalocephala,

parts of whose nervous system are asym-

metric. First the fertilized egg splits into a

cell / and a smaller P of obviously different

nature (Fig. 18). In the next stage they di-

vide along two perpendicular planes into

/' + I" and Pi + P2 respectively. There-

after the handle Pi + P2 turns about so that

P2 comes into contact with either P or/";

call the one it contacts B, the other A. We
now have a sort of rhomboid and roughly

APi is the antero-posterior axis and PPi the

dorsal-ventral one. Only the next division

which along a plane perpendicular to the one

separating A and B splits A as well as B into

symmetric halves A = a -f- oc, B = b + /3, is

that which determines left and right. A
further slight shift of the configuration destroys

this bilateral symmetry. The question arises

whether the direction of the two consecutive

shifts is a chance event which decides first

between anterior and posterior and then

between left and right, or whether the con-

stitution of the egg in its one-cell stage con-

tains specific agents which determine the

direction of these shifts. The hypothesis of

the mosaic egg favoring the second hypothesis

seems more likely for the species Ascaris.

There are known a number of cases of

genotypical inversion where the genetic con-

stitutions of two species are in the same rela-

tion as the atomic constitutions of two

enantiomoi ph crystals. More frequent, how-

ever, is phenotypical inversion. Left-hand-

edness in man is an example. I give another

more interesting one. Several Crustacea of

the lobster type have two morphologically

and functionally different claws, a bigger A

and a smaller a. Assume that in normally

developed individuals of our species, A is the

right claw. If in a young animal you cut off
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the right claw, inversive regeneration takes
place: the left claw develops into the bigger
form A while at the place of the right claw a
small one of type a is regenerated. One has
to infer from such and similar experiences the
bipotentiality of plasma, namely that all gen-
erative tissues which contain the potency of an
asymmetric character have the potency of
bringing forth both forms, so however that
in normal development always one form
develops, the left or the right. Which one is

genetically determined, but abnormal ex-
ternal circumstances may cause inversion.
On the basis of the strange phenomenon of
inversive regeneration Wilhelm Ludwig de-
veloped the hypothesis that the decisive fac-
tors in asymmetry may not be such specific

potencies as, say, the development of a
"right claw of type A," but two R and L
(right and left) agents which are distributed
in the organism with a certain gradient, the
concentration of one falling off from right
to left, the other in the opposite direction.
The essential point is that there is not one
but that there are two opposite gradient
fields R and L. Which is produced in greater
strength is determined by the genetic con-
stitution. If, however, by some damage to
the prevalent agent the other previously
suppressed one becomes prevalent, then in-

version takes place. Being a mathematician
and not a biologist I report with the utmost
caution on these matters, which seem to me
of highly hypothetical nature. But it is clear
that the contrast of left and right is connected
with the deepest problems concerning the
phylogenesis as well as the ontogenesis of
organisms.

38

TRANSLATORY, ROTATIONAL, AND

RELATED SYMMETRIES



TRANSLATORS ROTATIONAL, AND

RELATED SYMMETRIES

From bilateral we shall now turn to other

kinds of geometric symmetry. Even in dis-

cussing the bilateral type I could not help

drawing in now and then such other sym-

metries as the cylindrical or the spherical

ones. It seems best to fix the underlying gen-

eral concept with some precision beforehand,

and to that end a little mathematics is needed,

for which I ask your patience. I have spoken

of transformations. A mapping S of space as-

sociates with every space point p a point p'

as its image. A special such mapping is the

identity / carrying every point /; into itself.

Given two mappings S, T, one can perform

one after the other: if S carries p into p' and

T carries p' into p" then the resulting map-

ping, which we denote by ST, carries p into

p". A mapping may have an inverse S' such

that SS' = / and S'S = I; in other words,

if S carries the arbitrary point p into p'

then S' carries p' back into p, and a sim-

ilar condition prevails with S' performed

in the first and 6" in the second place. For

such a one-to-one mapping S the word trans-

formation was used in the first lecture; let the

inverse be denoted by $~~\ Of course, the

identity / is a transformation, and / itself is

its inverse. Reflection in a plane, the basic

operation of bilateral symmetry, is such that

its iteration SS results in the identity; in

other words, it is its own inverse. In general

composition of mappings is not commutative;

ST need not be the same as TS. Take for

instance a point o in a plane and let S be a

41



horizontal translation carrying o into 0\ and

T a rotation around o by 90°. Then ST
carries o into the point 02 (Fig- 19), but TS
carries into 0* If S is a transformation with

the inverse S~~\ then S~ l
is also a transforma-

tion and its inverse is S. The composite of

two transformations ST is a transformation

again, and (ST)' 1 equals T-IS-1 (in this

order!). With this rule, although perhaps

not with its mathematical expression, you are

all familiar. When you dress, it is not imma-

terial in which order you perform the opera-

lions; and when in dressing you start with the

shirt and end up with the coat, then in un-

dressing you observe the opposite order; first

take off the coat and the shirt comes last.

FIG. 19 °1

I have further spoken of a special kind of

transformations of space called similarity by

the geometers. But I preferred the name of

automorphisms for them, defining them with

Leibniz as those transformations which leave

the structure of space unchanged. For the

moment it is immaterial wherein that struc-

ture consists. From the very definition it is

clear that the identity / is an automorphism,

and if S is, so is the inverse S~ l
. Moreover

the composite ST of two automorphisms S, T
is again an automorphism. This is only an-

other way of saying that (1) every figure is

similar to itself, (2) if figure F' is similar to

F then F is similar to F', and (3) if F is similar

to F' and F' to F" then F is similar to F".

The mathematicians have adopted the word
group to describe this situation and therefore

say that the automorphisms form a group. Any
totality, any set T of transformations form a

group provided the following conditions are

satisfied: (1) the identity / belongs to F; (2)

if S belongs to T then its inverse S-1
does;

(3) if S and T belong to T then the composite

ST does.

One way of describing the structure of

space, preferred by both Newton and Helm-

holtz, is through the notion of congruence.

Congruent parts of space V, V are such as

can be occupied by the same rigid body in

two of its positions. If you move the body

from the one into the other position the par-

ticle of the body covering a point p of V will

afterwards cover a certain point p' of V, and

thus the result of the motion is a mapping

p —* p' of V upon V. We can extend the

rigid body either actually or in imagination

so as to cover an arbitrarily given point p of

space, and hence the congruent mapping

/;
—> p' can be extended to the entire space.

Any such congruent transformation—I call

it by that name because it evidently has an

inverse />'—>/>—is a similarity or an auto-

morphism; you can easily convince yourselves

that this follows from the very concepts. It

is evident moreover that the congruent trans-

formations form a group, a subgroup of the

group of automorphisms. In more detail the

situation is this. Among the similarities

there are those which do not change the

dimensions of a body; we shall now call them

congruences. A congruence is either proper,

carrying a left screw into a left and a right

one into a right, or it is improper or reflexive,

changing a left screw into a right one and

vice versa. The proper congruences are

those transformations which a moment ago

we called congruent transformations, con-
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necting the positions of points of a rigid

body before and after a motion. We shall

now call them simply motions (in a non-

kinematic geometric sense) and call the

improper congruences reflections, after the

most important example: reflection in a

plane, by which a body goes over into its

mirror image. Thus we have this step-wise

arrangement: similarities —* congruences =
similarities without change of scale —* motions

= proper congruences. The congruences

form a subgroup of the similarities, the mo-
tions form a subgroup of the group of con-

gruences, of index 2. The latter addition

means that if B is any given improper con-

gruence, we obtain all improper congruences

in the form BS by composing B with all pos-

sible proper congruences S. Hence the

proper congruences form one half, and the

improper ones another half, of the group of all

congruences. But only the first half is a

group; for the composite AB of two improper

congruences A, B is a proper congruence.

A congruence leaving the point fixed

may be called rotation around 0; thus there

are proper and improper rotations. The

FIG. 20

rotations around a given center form a

group. The simplest type of congruences

are the translations. A translation may be

represented by a vector AA'; for if a transla-

tion carries a point A into A' and the point

B into B' then BB' has the same direction
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and length as AA', in other words the vector

BB' = AA'. 1 The translations form a group;

indeed the succession of the two translations

AB, BC results in the translation AC.

What has all this to do with symmetry?

It provides the adequate mathematical

language to define it. Given a spatial con-

figuration ft, those automorphisms of space

which leave g unchanged form a group T,

and this group describes exactly the symmetry pos-

sessed by %. Space itself has the full sym-

metry corresponding to the group of all

automorphisms, of all similarities. The sym-

metry of any figure in space is described by a

subgroup of that group. Take for instance

the famous pentagram by which Dr. Faust

banned Mephistopheles the devil. It is

carried into itself by the five proper rotations

around its center 0, the angles of which are

multiples of 360°/5 (including the identity),

and then by the five reflections in the lines

joining with the five vertices. These ten

operations form a group, and that group tells

us what sort of symmetry the pentagram

1 While a segment has only length, a vector has

length and direction. A vector is really the same thing

as a translation, although one uses different phrase-

ologies for vectors and translations. Instead of speak-

ing of the translation a which carries the point A

into A' one speaks of the vector a = AA'; and in-

stead of the phrase: the translation a carries A into

A' one says that A' is the end point of the vector a

laid off from A. The same vector laid off from B ends

in B' if the translation carrying A into A' carries B

into B'.

FIG. 21
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possesses. Hence the natural generalization

which leads from bilateral symmetry to sym-
metry in this wider geometric sense consists

in replacing reflection in a plane by any group
of automorphisms. The circle in a plane
with center and the sphere in space around

have the symmetry described by the group
of all plane or spatial rotations respectively.

If a figure % does not extend to infinity then
an automorphism leaving the figure invariant
must be scale-preserving and hence a con-
gruence, unless the figure consists of one
point only. Here is the simple proof. Had
we an automorphism leaving g unchanged,
but changing the scale, then either this

automorphism or its inverse would increase

(and not decrease) all linear dimensions in a

certain proportion a:\ where a is a number
greater than 1. Call that automorphism S,

and let a, /3 be two different points of our
figure g. They have a positive distance d.

Iterate the transformation S,

S = S\ SS = S2
, SSS = S\ . . . .

The H-times iterated transformation S" carries

a and /3 into two points <x n, /3„ of our figure

whose distance is d a n
. With increasing

exponent n this distance tends to infinity.

But if our figure J is bounded, there is a

number c such that no two points of % have a

distance greater than c. Hence a contradic-
tion arises as soon as n becomes so large that

d • a" > c. The argument shows another
thing: Any finite group of automorphisms
consists exclusively of congruences. For if

it contains an 6" that enlarges linear dimen-
sions at the ratio a : 1, a > 1, then all the

infinitely many iterations S l,S2,Sz
,

• • • con-
tained in the group would be different be-
cause they enlarge at different scales a\ a 2

,
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,
• For such reasons as these we shall

almost exclusively consider groups of con-

gruences—even if we have to do with actually

or potentially infinite configurations such as

band ornaments and the like.

After these general mathematical consid-

erations let us now take up some special

groups of symmetry which are important in

art or nature. The operation which defines

bilateral symmetry, mirror reflection, is es-

sentially a one-dimensional operation. A

straight line can be reflected in any of its

points 0; this reflection carries a point P into

that point P' that has the same distance from

but lies on the other side. Such reflections

are the only improper congruences of the one-

dimensional line, whereas its only proper

congruences are the translations. Reflection

in followed by the translation OA yields

reflection in that point A\ which halves the

distance OA. A figure which is invariant

under a translation / shows what in the art

of ornament is called "infinite rapport," i.e.

repetition in a regular spatial rhythm. A
pattern invariant under the translation t is

also invariant under its iterations t
l

, t
2
, t

3
,

• • •
, moreover under the identity t° = I,

and under the inverse /
_1

of t and its itera-

tions r\ r2
, r3

,
• • •

. If t shifts the line

by the amount a then I" shifts it by the amount

na (n = 0, ±1, ±2, )•

Hence if we characterize a translation / by

the shift a it effects then the iteration or

power t" is characterized by the multiple na.

All translations carrying into itself a given

pattern of infinite rapport on a straight line

are in this sense multiples na of one basic

translation a. This rhythmic may be com-

bined with reflexive symmetry. If so the
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FIG. 22

FIG. 23

centers of reflections follow each other at

half the distance Y2 a. Only these two types

of symmetry, as illustrated by Fig. 22, are

possible for a one-dimensional pattern or
"ornament." (The crosses X mark the

centers of reflection.)

*-

Of course the real band ornaments are

not strictly one-dimensional, but their sym-
metry as far as we have described it now
makes use of their longitudinal dimension
only. Here are some simple examples from
Greek art. The first (Fig. 23) which shows
a very frequent motif, the palmette, is of

type i (translation + reflection). The next

(Fig. 24) are without reflections (type n).

This frieze of Persian bowmen from Darius'

palace in Susa (Fig. 25) is pure translation;

but you should notice that the basic transla-

tion covers twice the distance from man to

man because the costumes of the bowmen
alternate. Once more I shall point out the
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FIG. 24

Monreale mosaic of the Lord's Ascension

(Fig. 10), but this time drawing your atten-

tion to the band ornaments framing it. The

widest, carried out in a peculiar technique,

later taken up by the Cosmati, displays the

translatory symmetry only by repetition of

the outer contour of the basic tree-like motif,

FIG. 25
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while each copy is filled by a different highly

symmetric two-dimensional mosaic. The
palace of the doges in Venice (Fig. 26) may
stand for translator)' symmetry in archi-

tecture. Innumerable examples could be

added.

As I said before, band ornaments really

consist of a two-dimensional strip around a

central line and thus have a second trans-

FIG. 26

versal dimension. As such they can have

further symmetries. The pattern may be

carried into itself by reflection in the central

line /; let us distinguish this as longitudinal

reflection from the transversal reflection in a

line perpendicular to /. Or the pattern may
be carried into itself by longitudinal reflec-

tion combined with the translation by %a
(longitudinal slip reflection). A frequent

motif in band ornaments are cords, strings, or
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plaits of some sort, the design of which sug-

gests that one strand crosses the other in

space (and thus makes part of it invisible).

If this interpretation is accepted, further

operations become possible; for example, re-

flection in the plane of the ornament would

change a strand slightly above the plane into

one below. All this can be thoroughly

analyzed in terms of group theory as is for

instance done in a section of Andreas

Spciser's book, Theorie der Gruppen von endlicher

Ordnung, quoted in the Preface.

In the organic world the translatory sym-

metry, which the zoologists call metamerism,

is seldom as regular as bilateral symmetry

frequently is. A maple shoot and a shoot

of Angraecum distichum (Fig. 27) may serve

as examples. 2 In the latter case translation

is accompanied by longitudinal slip reflec-

tion. Of course the pattern does not go on

into infinity (nor does a band ornament),

but one may say that it is potentially infinite

at least in one direction, as in the course of

time ever new segments separated from each

other by a bud come into being. Goethe

said of the tails of vertebrates that they allude

as it were to the potential infinity of organic

existence. The central part of the animal

shown in this picture, a scolopendrid (Fig. 28),

possesses fairly regular translational, cem-

bincd with bilateral, symmetry, the basic

operations of which are translation by one

segment and longitudinal reflection.

In one-dimensional time repetition at equal

intervals is the musical principle of rhythm.

As a shoot grows it translates, one might say,

a slow temporal into a spatial rhythm. Re-

2 This and the next picture are taken from Studium

Generate, p. 249 and p. 241 (article by W. Troll,

"Symmetriebetrachtung in der Biologic").
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flection, inversion in time, plays a far less

important part in music than rhythm does.

A melody changes its character to a consid-

erable degree if played backward, and I, who
am a poor musician, find it hard to recog-

nize reflection when it is used in the construc-

tion of a fugue; it certainly has no such spon-

taneous effect as rhythm. All musicians

agree that underlying the emotional element

of music is a strong formal element. It may
be that it is capable of some such mathe-
matical treatment as has proved successful

for the art of ornaments. If so, we have
probably not yet discovered the appropriate

mathematical tools. This would not be so

surprising. For after all, the Egyptians ex-

celled in the ornamental art four thousand

years before the mathematicians discovered

in the group concept the proper mathematical

instrument for the treatment of ornaments
and for the derivation of their possible sym-
metry classes. Andreas Speiser, who has

taken a special interest in the group-theoretic

aspect of ornaments, tried to apply combina-
torial principles of a mathematical nature

also to the formal problems of music. There
is a chapter with this title in his book, "Die
mathematische Denkweise," (Zurich, 1932).

As an example, he analyzes Beethoven's pas-

toral sonata for piano, opus 28, and he also

points to Alfred Lorenz's investigations on
the formal structure of Richard Wagner's
chief works. Metrics in poetry is closely

related, and here, so Speiser maintains,

science has penetrated much deeper. A
common principle in music and prosody

seems to be the configuration a a b which is

often called a bar: a theme a that is repeated

and then followed by the "envoy" b; strophe,

antistrophe, and epode in Greek choric lyrics.

But such schemes fall hardly under the

heading of symmetry. 3

We return to symmetry in space. Take a

band ornament where the individual section

repeated again and again is of length a and

sling it around a circular cylinder, the cir-

cumference of which is an integral multiple

of a, for instance 25a. You then obtain a

pattern which is carried over into itself

through the rotation around the cylinder axis

by a = 360°/25 and its repetitions. The

twenty-fifth iteration is the rotation by 360°,

or the identity. We thus get a finite group

of rotations of order 25, i.e. one consisting of

25 operations. The cylinder may be re-

placed by any surface of cylindrical sym-

3 The reader should compare what G. D. Birkhoff

has to say on the mathematics of poetry and music

in the two publications quoted in Lecture i, note 1.

FIG. 29 FIG. 30
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FIG. 31

metry, namely by one that is carried into

itself by all rotations around a certain axis, for

instance by a vase. Fig. 29 shows an attic

vase of the geometric period which displays

quite a number of simple ornaments of this

type. The principle of symmetry is the same,

although the style is no longer "geometric,"

in this Rhodian pitcher (Fig. 30), Ionian

school of the seventh century b.c. Other
illustrations are such capitals as these from
early Egypt (Fig. 31). Any finite group of

proper rotations around a point in a plane,

or around a given axis in space, contains a

primitive rotation t whose angle is an aliquot

part 360% of the full rotation by 360°, and
consists of its iterations t\ t

2
, . . . ,

/»-',

t
n = identity. The order n completely char-

acterizes this .group. The result follows from
the analogous fact that any group of trans-

lations of a line, provided it contains no
operations arbitrarily near to the identity

except the identity itself, consists of the itera-

FIG. 32

tions va of a single translation a (v = 0, ±1,

±2, • • • )•

The wooden dome in the Bardo of Tunis,

once the palace of the Beys of Tunis (Fig. 32),

may serve as an example from interior archi-

tecture. The next picture (Fig. 33) takes

you to Pisa; the Baptisterium with the tiny-

looking statue of John the Baptist on top is a

central building in whose exterior you can

distinguish six horizontal layers each of

rotary symmetry of a different order n. One

could make the picture still more impressive

by adding the leaning tower with its six gal-

leries of arcades all having rotary symmetry
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FIG. 33
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of the same high order and the dome itself,

the exterior of whose nave displays in columns
and friezes patterns of the lineal translatory

type of symmetry while the cupola is sur-

rounded by a colonnade of high order rotary

symmetry.

An entirely different spirit speaks to us
from the view, seen from the rear of the

choir, of the Romanesque cathedral in Mainz,
Germany (Fig. 34). Yet again repetition in
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the round arcs of the friezes, octagonal central

symmetry (n = 8, a low value compared to

those embodied in the several layers of the

Pisa Baplisterium) in the small rosette and the

three towers, while bilateral symmetry rules

the structure as a whole as well as almost

every detail.

Cyclic symmetry appears in its simplest

form if the surface of fully cylindrical sym-

metry is a plane perpendicular to the axis.

We then can limit ourselves to the two-

FIG. 34
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FIG. 35

dimensional plane with a center 0. Mag-
nificent examples of such central plane sym-

metry are provided by the rose windows of

Gothic cathedrals with their brilliant-colored

glasswork. The richest I remember is the

rosette of St. Pierre in Troyes, France, which

is based on the number 3 throughout.

Flowers, nature's gentlest children, are also

conspicuous for their colors and their cyclic

symmetry. Here (Fig. 35) is a picture of

an iris with its triple pole. The symmetry
of 5 is most frequent among flowers. A page

like the following (Fig. 36) from Ernst
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Haeckel's Kunstjormen der Natur seems to indi-

cate that it also occurs not infrequently

among the lower animals. But the biologists

warn me that the outward appearance of

these echinoderms of the class of Ophiodea is

to a certain degree deceptive; their larvae

are organized according to the principle of

bilateral symmetry. No such objection at-

taches to the next picture from the same
source (Fig. 37), a Discomedusa of octagonal

symmetry. For the coelentera occupy a
place in the phylogenetic evolution where
cyclic has not yet given way to bilateral sym-
metry. Haeckel's extraordinary work, in

which his interest in the concrete forms of

organisms finds expression in countless draw-
ings executed in minutest detail, is a true

nature's codex of symmetry. Equally re-

vealing for Haeckel, the biologist, are the

thousands and thousands of figures in his

Challenger Monograph, in which he describes

for the first time 3,508 new species of radio-

larians discovered by him on the Challenger

Expedition, 1887. One should not forget

these accomplishments over the often all-too-

speculative phylogenetic constructions in

which this enthusiastic apostle of Darwinism
indulged, and over his rather shallow mate-

rialistic philosophy of monism, which made
quite a splash in Germany around the turn

of the century.

Speaking of Medusae I cannot resist the

temptation of quoting a few lines from D'Arcy
Thompson's classic work on Growth and Form,

a masterpiece of English literature, which
combines profound knowledge in geometry,

physics, and biology with humanistic erudi-

tion and scientific insight of unusual origi-

nality. Thompson reports on physical ex-

periments with hanging drops which serve
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^
to illustrate by analogy the formation of

medusae. "The living medusa," he says,

"has geometrical symmetry so marked and

regular as to suggest a physical or mechanical

element in the little creatures' growth and

construction. It has, to begin with, its

vortex-like bell or umbrella, with its sym-

metrical handle or manubrium. The bell

is traversed by radial canals, four or in

multiples of four; its edge is beset with ten-

tacles, smooth or often beaded, at regular

intervals or of graded sizes; and certain

sensory structures, including solid concre-

tions or 'otoliths,' are also symmetrically

interspersed. No sooner made, then it be-

gins to pulsate; the bell begins to 'ring.'

Buds, miniature replicas of the parent-

organism, are very apt to appear on the

tentacles, or on the manubrium or sometimes

on the edge of the bell; we seem to see one

vortex producing others before our eyes.

The development of a medusoid deserves to

be studied without prejudice from this point

of view. Certain it is that the tiny medusoids

of Obelia, for instance, are budded off with a

rapidity and a complete perfection which

suggests an automatic and all but instantane-

ous act of conformation, rather than a gradual

process of growth."

While pentagonal symmetry is frequent in

the organic world, one does not find it

among the most perfectly symmetrical crea-

tions of inorganic nature, among the crystals.

There no other rotational symmetries are

possible than those of order 2, 3, 4, and 6.

Snow crystals provide the best known speci-

mens of hexagonal symmetry. Fig. 38 shows

some of these little marvels of frozen water.

In my youth, when they came down from

heaven around Christmastime blanketing the
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landscape, they were the delight of old and
young. Now only the skiers like them, while
they have become the abomination of motor-
ists. Those versed in English literature will

remember Sir Thomas Browne's quaint ac-

count in his Garden of Cyrus (1658) of hexag-
onal and "quincuncial" symmetry which
"doth neatly declare how nature Geome-
trizeth and observeth order in all things."

One versed in German literature will re-

member how Thomas Mann in his Magic
Mountain* describes the "hexagonale Un-
wesen" of the snow storm in which his hero,

Hans Castorp, nearly perishes when he falls

asleep with exhaustion and leaning against
a barn dreams his deep dream of death and
love. An hour before when Hans sets out
on his unwarranted expedition on skis he
enjoys the play of the flakes "and among
these myriads of enchanting little stars," so
he philosophizes, "in their hidden splendor,
too small for man's naked eye to see, there
was not one like unto another; an endless

inventiveness governed the development and
unthinkable differentiation of one and the
same basic scheme, the equilateral, equi-
angled hexagon. Yet each in itself—this was
the uncanny, the antiorganic, the life-denying

character of them all—each of them was ab-
solutely symmetrical, icily regular in form.
They were too regular, as substance adapted
to life never was to this degree—the living

principle shuddered at this perfect precision,

found it deathly, the very marrow of death

—

Hans Castorp felt he understood now the
reason why the builders of antiquity pur-
posely and secretly introduced minute varia-

4
1 quote Helen Lowe- Porter's translation, Knopf

New York, 1927 and 1939.
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tion from absolute symmetry in their colum-

nar structures." 5

Up to now we have paid attention to

proper rotations only. If improper rotations

are taken into consideration, we have the two

following possibilities for finite groups of

rotations around a center in plane geom-

etry, which correspond to the two possibilities

we encountered for ornamental symmetry on

a line: (1) the group consisting of the repeti-

tions of a single proper rotation by an aliquot

part a = 360°/w of 360°; (2) the group of

these rotations combined with the reflections

in n axes forming angles of J^a. The first

group is called the cyclic group Cn and the

second the dihedral group D n . Thus these

are the only possible central symmetries in

two-dimensions:

(1) C, C2, Cz, • • ;Dh D2,D,, • • • .

Ci means no symmetry at all, D\ bilateral

symmetry and nothing else. In architecture

the symmetry of 4 prevails. Towers often

have hexagonal symmetry. Central build-

ings with the symmetry of 6 are much less

frequent. The first pure central building

after antiquity, S. Maria degli Angeli in

Florence (begun 1434), is an octagon.

Pentagons are very rare. When once before

I lectured on symmetry in Vienna in 1937 I

said I knew of only one example and that a

very inconspicuous one, forming the passage-

way from San Michele di Murano in Venice

8 Diirer considered his canon of the human figure

more as a standard from which to deviate than as a

standard toward which to strive. Vitruvius' tem-

peralurae seem to have the same sense, and maybe

the little word "almost" in the statement ascribed to

Polykleitos and mentioned in Lecture i, note 1,

points in the same direction.
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FIG. 39

FIG. 40

to the hexagonal Capella Emiliana. Now,
of course, we have the Pentagon building in

Washington. By its size and distinctive

shape, it provides an attractive landmark for

bombers. Leonardo da Vinci engaged in

systematically determining the possible sym-
metries of a central building and how to at-

tach chapels and niches without destroying

the symmetry of the nucleus. In abstract

modern terminology, his result is essentially

our above table of the possible finite groups

of rotations (proper and improper) in two
dimensions.

So far the rotational symmetry in a plane

had always been accompanied by reflective

symmetry; I have shown you quite a number
of examples for the dihedral group Dn and
none for the simpler cyclic group Cn . But
this is more or less accidental. Here (Fig.

39) are two flowers, a geranium (i) with the

symmetry group Ds, while Vinca herbacea (n)

has the more restricted group Cs owing to

the asymmetry of its petals. Fig. 40 shows
what is perhaps the simplest figure with rota-

tional symmetry, the tripod (n = 3). When
one wants to eliminate the attending reflec-

tive symmetry, one puts little flags unto the

arms and obtains the triquetrum, an old

magic symbol. The Greeks, for instance,

used it with the Medusa's head in the center

as the symbol for the three-cornered Sicily.

(Mathematicians are familiar with it as the

seal on the cover of the Rendiconti del Circolo

Matematico di Palermo.) The modification

with four instead of three arms is the swastika,

which need not be shown here—one of the

most primeval symbols of mankind, common
possession of a number of apparently inde-

pendent civilizations. In my lecture on
symmetry in Vienna in the fall of 1937, a

FIG. 41

short time before Hitler's hordes occupied

Austria, I added concerning the swastika:

"In our days it has become the symbol of a

terror far more terrible than the snake-girdled

Medusa's head"—and a pandemonium of

applause and booing broke loose in the

audience. It seems that the origin of the

magic power ascribed to these patterns lies

in their startling incomplete symmetry

—

rotations without reflections. Here (Fig.

41) is the gracefully designed staircase of the

pulpit of the Stephan's dome in Vienna; a

triquetrum alternates with a swastika-like

wheel.
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FIG. 42

So much about rotational symmetry in two
dimensions. If dealing with potentially in-

finite patterns like band ornaments or with
infinite groups, the operation under which
the pattern is invariant is not of necessity a
congruence but could be a similarity. A
similarity in one dimension that is not a mere
translation has a fixed point and is a
dilatation s from in a certain ratio a:\
where a 9* 1. It is no essential restriction

to assume a > 0. Indefinite iteration of

this operation generates a group 2 consisting

of the dilatations

(2) (n = Q, ±1, ±2, • • •

).

A good example of this type of symmetry
is shown by the shell of Turrilella duplicate

(Fig. 42). It is really quite remarkable
how exactly the widths of the consecutive

whorls of this shell follow the law of geometric
progression.

The hands of some clocks perform a con-

tinuous uniform rotation, others jump from
minute to minute. The rotations by an
integral number of minutes form a discon-

tinuous subgroup within the continuous

group of all rotations, and it is natural to

consider a rotation s and its iterations (2) as

contained in the continuous group. We can
apply this viewpoint to any similarity in 1,

2, or 3 dimensions, as a matter of fact to any
transformation s. The continuous motion of

a space-filling substance, a "fluid," can
mathematically be described by giving the

transformation U(t,l') which carries the
position Pt of any point of the fluid at the

moment / over into its position Pt
. at the time

/'. These transformations form a one-

parameter group if U(l,l') depends on the
time difference/' - /only, U(t/) = S(l' - /),

i.e. if during equal time intervals always the

same motion is repeated. Then the fluid is

in "uniform motion." The simple group

law

S(h)S(h) = S(h + h)

expresses that the motions during two con-

secutive time intervals l u h result in the

motion during the time t\ + t2 . The motion

during 1 minute leads to a definite trans-

formation s = S(\), and for all integers n the

motion S(n) performed during n minutes is

the iteration s
n

: the discontinuous group 2

consisting of the iterations of s is embedded

in the continuous group with the parameter t

consisting of the motions S(t). One could

say that the continuous motion consists of the

endless repetition of the same infinitesimal

motion in consecutive infinitely small time

intervals of equal length.

We could have applied this consideration

to the rotations of a plane disc as well as to

dilatations. We now envisage any proper

similarity s, i.e. one which does not inter-

change left and right. If, as we assume, it is

not a mere translation, it has a fixed point

and consists of a rotation about combined

with a dilatation from the center 0. It can

be obtained as the stage S{\) reached after

1 minute by a continuous process S(t) of com-

bined uniform rotation and expansion.

This process carries a point t* along a

so-called logarithmic or equiangular spiral.

This curve, therefore, shares with straight

line and circle the important property of

going over into itself by a continuous group

of similarities. The words by which James

Bernoulli had the spira mirabilis adorned on

his tombstone in the Munster at Basle,

"Eadem mutata resurgo," are a grandilo-
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FIG. 43

quent expression of this property. Straight

line and circle are limiting cases of the loga-

rithmic spiral, which arise when in the com-
bination rotation-plus-dilatation one of the

two components happens to be the identity.

The stages reached by the process at the
times

(3) t = n =
, -2, -1,0,1,2, • • •

form the group consisting of the iterations

(2). The well-known shell of Nautilus (Fig.

43) shows this sort of symmetry to an aston-

ishing perfection. You see here not only the

continuous logarithmic spiral, but the poten-
tially infinite sequence of chambers has a
symmetry described by the discontinuous
group 2. For everybody looking at this

picture (Fig. 44) of a giant sunflower,

Hehanthus maximus, the florets will naturally

arrange themselves into logarithmic spirals,

two sets of spirals of opposite sense of coiling.
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The most general rigid motion in three-

dimensional space is a screw motion s, com-

bination of a rotation around an axis with a

translation along that axis. Under the influ-

ence of the corresponding continuous uniform

motion any point not on the axis describes a

screw-line or helix which, of course, could

say of itself with the same right as the loga-

rithmic spiral: eadem resurgo. The stages Pn

which the moving point reaches at the equi-



distant moments (3) are equidistributed over

the helix like stairs on a winding staircase.

If the angle of rotation of the operation j- is a

fraction p/v of the full angle 360° expressible

in terms of small integers /x, v then every i>th

point of the sequence Pn lies on the same
vertical, and y. full turnings of the screw are

necessary to get from Pn to the point Pn+V
above it. The leaves around the shoot of a

plant often show such a regular spiral ar-

rangement. Goethe spoke of a spiral tend-

ency in nature, and under the name of

phyllolaxis this phenomenon, since the days
of Charles Bonnet (1754), has been the sub-

ject of much investigation and more specula-

tion among botanists. 6 One has found that

the fractions n/v representing the screw-like

arrangement of leaves quite often are mem-
bers of the "Fibonacci sequence"

(4) H, y2 , H, H, H, Hs, 13Ai, %,
which results from the expansion into a con-

tinued_ fraction of the irrational number

M(V5 — 1). This number is no other but

the ratio known as the aurea sectio, which has

played such a role in attempts to reduce

beauty of proportion to a mathematical
formula. The cylinder on which the screw
is wound could be replaced by a cone; this

amounts to replacing the screw motion s by
any proper similarity—rotation combined
with dilatation. The arrangement of scales

on a fir-cone falls under this slightly more
general form of symmetry in phyllotaxis.

The transition from cylinder over cone to

disc is obvious, illustrated by the cylindrical
6 This phenomenon plays also a role in J. Ham-

bidge's constructions. His Dynamic symmetry contains

on pp. 146-157 detailed notes by the mathematician
R. C. Archibald on the logarithmic spiral, golden
section, and the Fibonacci series.
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stem of a plant with its leaves, a fir-cone with

its scales, and the discoidal inflorescence of

Helianthus with its florets. Where one can

check the numbers (4) best, namely for the

arrangement of scales on a fir-cone, the ac-

curacy is not too good nor are considerable

deviations too rare. P. G. Tait, in the

Proceedings of the Royal Society of Edinburgh

(1872), has tried to give a simple explanation,

while A. H. Church in his voluminuous

treatise Relations of phyllotaxis to mechanical

laws (Oxford, 1901-1903) sees in the arith-

metics of phyllotaxis an organic mystery. I

am afraid modern botanists take this whole

doctrine of phyllotaxis less seriously than

their forefathers.

Apart from reflection all symmetries so far

considered are described by a group consist-

ing of the iterations of one operation s. In

one case, and that is undoubtedly the most

important, the resulting group is finite,

namely if one takes for s a rotation by an

angle a = 360°/n which is an aliquot part

of the full rotation 360°. For the two-di-

mensional plane there are no other finite

groups of proper rotations than these; witness

the first line, Ch C2, C3,
• • • of Leonardo's

table (1). The simplest figures which have

the corresponding symmetry are the regular

polygons: the regular triangle, the square,

the regular pentagon, etc. The fact that

there is for every number n = 3, 4, 5, • •
•

a regular polygon of n sides is closely related

to the existence for every n of a rotational

group of order n in plane geometry. Both

facts are far from trivial. Indeed, the situa-

tion in three dimensions is altogether differ-

ent: there do not exist infinitely many regular

polyhedra in 3-space, but not more than five,

often called the Platonic solids because they
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play an eminent role in Plato's natural phi-

losophy. They are the regular tetrahedron,

the cube, the octahedron, moreover the

pentagondodecahedron, the sides of which

are twelve regular pentagons, and the icosa-

hedron bounded by twenty regular triangles.

One might say that the existence of the first

three is a fairly trivial geometric fact. But

the discovery of the last two is certainly one

of the most beautiful and singular discoveries

made in the whole history of mathematics.

With a fair amount of certainty, it can be

traced to the colonial Greeks in southern Italy.

The suggestion has been made that they ab-

stracted the regular dodecahedron from the

crystals of pyrite, a sulphurous mineral

abundant in Sicily. But as mentioned be-

fore, the symmetry of 5 so characteristic for

the regular dodecahedron contradicts the

laws of crystallography, and indeed one finds

that the pentagons bounding the dodecahedra

in which pyrite crystallizes have 4 edges of

equal, but one of different, length. The

first exact construction of the regular penta-

gondodecahedron is probably due to Theaete-

tus. There is some evidence that dodeca-

hedra were used as dice in Italy at a very

early time and had some religious significance

in Etruscan culture. Plato, in the dialogue

Timaeus, associates the regular pyramid,

octahedron, cube, icosahedron, with the four

elements of fire, air, earth, and water (in

this order), while in the pentagondodeca-

hedron he sees in some sense the image of the

universe as a whole. A. Speiscr has advo-

cated the view that the construction of the

five regular solids is the chief goal of the

deductive system of geometry as erected by

the Greeks and canonized in Euclid's Ele-

ments. May I mention, however, that the

Greeks never used the word "symmetric"

in our modern sense. In common usage

(xvfj.fi€Tpos means proportionate, while in Euclid

it is equivalent to our commensurable: side and

diagonal of a square are incommensurable

quantities, durvnnerpa neykdr).

Here (Fig. 45) is a page from Haeckel's

Challenger monograph showing the skeletons

FIG. 45
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of several Radiolarians. Nr. 2, 3, and 5 are

octahedron, icosahedron, and dodecahedron
in astonishingly regular form; 4 seems to have

a lower symmetry.

FIG 46

Kepler, in his Myslerium cosmographicum,

published in 1595, long before he discovered

the three laws bearing his name today, made
an attempt to reduce the distances in the

planetary system to regular bodies which are

alternatingly inscribed and circumscribed to

spheres. Here (Fig. 46) is his construction,

by which he believed he had penetrated

deeply into the secrets of the Creator. The
six spheres correspond to the six planets,

Saturn, Jupiter, Mars, Earth, Venus, Mer-
curius, separated in this order by cube,

tetrahedron, dodecahedron, octahedron, ico-

sahedron. (Of course, Kepler did not know

76

about the three outer planets, Uranus, Nep-

tune, and Pluto, which were discovered in

1781, 1846, and 1930 respectively.) He tries

to find the reasons why the Creator had

chosen this order of the Platonic solids and

draws parallels between the properties of

the planets (astrological rather than astro-

physical properties) and those of the corre-

sponding regular bodies. A mighty hymn in

which he proclaims his credo, "Credo

spatioso numen in orbe," concludes his book.

We still share his belief in a mathematical

harmony of the universe. It has withstood

the test of ever widening experience. But

we no longer seek this harmony in static

forms like the regular solids, but in dynamic

laws.

As the regular polygons are connected with

the finite groups of plane rotations, so must

the regular polyhedra be intimately related

to the finite groups of proper rotations around

a center in space. From the study of

plane rotations we at once obtain two types

of proper rotation groups in space. Indeed,

the group Cn of proper rotations in a hori-

zontal plane around a center can be inter-

preted as consisting of rotations in space

around the vertical axis through 0. Reflec-

tion of the horizontal plane in a line / of the

plane can be brought about in space through

a rotation around / by 180° (Umklappung)

.

You may remember that we mentioned this

in connection with the analysis of a Sumerian

picture (Fig. 4). In this way the group

D n in the horizontal plane is changed into a

group D'n of proper rotations in space; it con-

tains the rotations around a vertical axis

through by the multiples of 360°/n and

the Umklappungen around n horizontal axes

through which form equal angles of
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FIG 47

360°/2/z with each other. But it should be

observed that the group D\ as well as C2

consists of the identity and the Umklappung
around one line. These two groups are

therefore identical, and in a complete list of

the different groups of proper rotations in three

dimensions, D\ should be omitted if C2 is

kept. Hence we start our list thus:

Ci, C2, Cs, C4, • •
;

D'2,
£>'

3 , Z>'4 ,
•• •

.

D'2 is the so-called four-group consisting of the

identity and the Umklappungen around three

mutually perpendicular axes.

For each one of the five regular bodies we
can construct the group of those proper rota-

tions which carry that body into itself. Does

this give rise to five new groups? No, only

to three, and that for the following reason.

Inscribe a sphere into a cube and an octa-

hedron into the sphere such that the corners

of the octahedron lie where the sides of the

cube touch the sphere, namely in the centers

of the six square sides. (Fig. 47 shows the

two-dimensional analogue.) In this position

cube and octahedron are polar figures in the

sense of projective geometry. It is clear that

every rotation which carries the cube into

itself also leaves the octahedron invariant,

and vice versa. Hence the group for the

octahedron is the same as for the cube. In

the same manner pentagondodecahedron and
icosahedron are polar figures. The figure

polar to a regular tetrahedron is a regular

tetrahedron the corners of which are the

antipodes of those of the first. Thus we find

three new groups of proper rotations, T, W,

and P; they are those leaving invariant the

regular tetrahedron, the cube (or octa-

hedron), and the pentagondodecahedron (or
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icosahedron) respectively. Their orders, i.e.

the number of operations in each of them,

are 12, 24, 60 respectively.

It can be shown by a relatively simple

analysis (Appendix A) that with the addition

of these three groups our table is complete:

Cn (n = 1, 2, 3, • • •),

(5) D'n (n = 2, 3, • • •);

T, W, P.

This is the modern equivalent to the tabula-

tion of the regular polyhedra by the Greeks.

These groups, in particular the last three,

are an immensely attractive subject for

geometric investigation.

What further possibilities arise if improper

rotations are also admitted to our groups?

This question is best answered by making use

of one quite singular improper rotation,

namely reflection in 0; it carries any point

P into its antipode P' with respect to found

by joining P with and prolonging the

straight line P0 by its own length: PO =

OP'. This operation Z commutes with every

rotation S, <? = S£ Now let T be one of

our finite groups of proper rotations. One

way of including improper rotations is simply

by adjoining £, more precisely by adding to

the proper rotations 5 of T all the improper

rotations of the form <S (with S in T). The

order of the group T = T + Z? thus ob-

tained is clearly twice that of V. Another

way of including improper rotations arises

from this situation: Suppose T is contained

as a subgroup of index 2 in another group T'

of proper rotations; so that one-half of the

elements of V lie in I\ call them S, and one-

half, S', do not. Now replace these latter

by the improper rotations ZS> In tms

manner you get a group V'T which contains
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F while the other half of its operations are

improper. For instance, T = C„ is a sub-

group of index 2 of V = D'n ; the operations

S' of Dn not contained in Cn are the Umklap-
pungen around the n horizontal axes. The
corresponding ^S' are the reflections in the

vertical planes perpendicular to these axes.

Thus D„Cn consists of the rotations around

the vertical axis, the angles of which are

multiples of 360%?, and of the reflections in

vertical planes through this axis forming

angles of 360°/2tz with each other. You
might say that this is the group formerly

denoted by Dn - Another example, the

simplest of all: T = Cx is contained in V' =
d. The one operation S' of C2 not contained

in Ci is the rotation by 180° about the vertical

axis; <5" is reflection in the horizontal plane

through 0. Hence C>Ci is the group con-

sisting of the identity and of the reflection

in a given plane; in other words, the group

to which bilateral symmetry refers.

The two ways described are the only ones

by which improper rotations may be included

in our groups. (For the proof see Appendix

B.) Hence this is the complete table of all

finite groups of (proper and improper)

rotations:

ORNAMENTAL SYMMETRY

cn ,
c,„ C/2nC/n (n = 1, 2, 3, •

D'n ,
D'n ,

D'na,
(n = 2, 3, •

•

r, W, P T, W, P; WT.

The last group WT is made possible by the

fact that the tetrahedral group T is a sub-

group of index 2 of the octahedral group W.

This list will be of importance to us when in

the last lecture we shall consider the sym-
metry of crystals.
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ORNAMENTAL SYMMETRY

This lecture will have a more systematic

character than the preceding one, in as much

as it will be dedicated to one special kind of

geometric symmetry, the most complicated

but also the most interesting from every angle.

In two dimensions the art of surface orna-

ments deals with it, in three dimensions it

characterizes the arrangement of atoms in a

crystal. We shall therefore call it the orna-

mental or crystallographic symmetry.

Let us begin with an ornamental pattern

in two dimensions which probably occurs

more frequently than any other, both in art

and nature: the hexagonal pattern so often

used for tiled floors in bathrooms. You

see it here realized by the honeycomb as it

is built by our common hivebees (Fig. 48).

The bees' cells have prismatic shape, the

photograph is taken in the direction of these

prisms. As a matter of fact, a honeycomb

consists of two layers of such cells, the prisms

of the one layer facing one way, the other

the opposite way. How the inner ends of

these two layers dovetail is a spatial problem

which we shall presently take up. At the

moment we are concerned with the simpler

two-dimensional question. If you pile round-

shots or round beads in a heap they will of

themselves get arranged in the three-dimen-

sional analogue of the hexagonal configura-

tion. In two dimensions the task is to pack

equal circles as compactly as possible. You

start with a horizontal row of circles that

touch each other. If you drop another

circle from above upon this row it will nest

between two adjacent circles of the row,
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and the centers of the three circles will form
an equilateral triangle. From this upper
circle there derives a second horizontal row of

circles nesting between those of the first row;
and so on (Fig. 49). The circles leave little

lacunae between them. The tangents of a
circle at the points where it touches the six

surrounding circles form a regular hexagon

FIG. 48
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circumscribing the circle, and if you replace

each circle by this hexagon you obtain the

regular configuration of hexagons filling the

whole plane.

According to the laws of capillarity a soap

film spanned into a given contour made of

thin wire assumes the shape of a minimal sur-

face, i.e. it has smaller area than any other

FIG. 49

surface with the same contour. A soap

bubble into which a quantum of air is blown

assumes spherical form because the sphere

encompasses the given volume with a mini-

mum of surface. Thus is it not astonishing

that a froth of two-dimensional bubbles of

equal area will arrange itself in the hexagonal

pattern because among all divisions of the

plane into parts of equal area that is the one

for which the net of contours has minimum

length. We here suppose that the problem

has been reduced to two dimensions by deal-

ing with a horizontal layer of bubbles, say,

between two horizontal glass plates. If the

froth of vesicles has a boundary (an epidermal

layer, as the biologist would say), we observe

85



FIG. 50

FIG. 51

that it consists of circular arcs each forming

an angle of 120° with the adjacent cell wall

and the next arc, as is required by the law
of minimal length. After this explanation

FIG. 52

one will not be surprised to find the hexagonal

pattern realized in such different structures

as for instance the parenchyma of maize

(Fig. 50), the retinal pigment of our eyes,

the surface of many diatoms, of which I

show here (Fig. 51) a beautiful specimen,

and finally the honeycomb. As the bees,

which are all of nearly equal size, build their

cells gyrating around in them, the cells will

form a densest packing of parallel circular

cylinders which in cross section appear as our

hexagonal pattern of circles. As long as the

bees are at work the wax is in a semi-fluid

state, and thus the forces of capillarity proba-

bly more than the pressures exerted from

within by the bees' bodies transform the

circles into circumscribed hexagons (whose

corners however still show some remains of

the circular form). With the parenchym

of maize you may compare this artificial cel-

lular tissue (Fig. 52) formed by the diffusion

in gelatin of drops of a solution of potassium
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FIG. 53

FIG. 54

ferrocyanide. The regularity leaves some-

thing to be desired; there are even places

where a pentagon is smuggled in instead of a

hexagon. Here (Fig. 53 and 54) are two

other artificial tissues of hexagonal pattern

taken at random from a recent issue of Vogue

(February 1951). The siliceous skeleton of

one of Haeckel's Radiolarians which he called

Aulonia hexagona (Fig. 55) seems to exhibit a

fairly regular hexagonal pattern spread out

not in a plane but over a sphere. But a

hexagonal net covering the sphere is im-

possible owing to a fundamental formula of

topology. This formula refers to an arbi-

trary partition of the sphere into countries

that border on each other along certain

edges. It tells that the number A of coun-

tries, the number E of edges and the number

C of corners (where at least three countries

come together) satisfy the relation A + C — E
= 2. Now for a hexagonal net we would

FIG. 55
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have E = 3A,C = 2A and hence A + C - E
= 0! And sure enough, we see that some

of the meshes of the net of Aulonia are not

hexagons but pentagons.

From the densest packing of circles in a

plane let us now pass to the densest packing

of equal spheres, of equal balls in space. We
start with one ball and a plane, the "hori-

zontal plane" through its center. In densest

packing this ball will touch on twelve others

("like the seeds in a pomegranate," as Kepler

says), six in the horizontal plane, three below,

and three above. 1 If mutual penetration is

impossible the balls in this arrangement,

under uniform expansion around their fixed

centers, will change into rhombic dode-

cahedra that fill the whole space. Mark that

the individual dodecahedron is not a regular

solid—whereas in the corresponding two-

dimensional problem a regular hexagon re-

sulted! The bees' cell consists of the lower

half of such a dodecahedron with the six

vertical sides so prolonged as to form a

hexagonal prism with an open end. Much
has been written on this question of the

geometry of the honeycomb. The bee's

strange social habits and geometric talents

could not fail to attract the attention and

excite the admiration of their human ob-

servers and exploiters. "My house," says

the bee in the Arabian Nights, "is constructed

according to the laws of a most severe archi-

tecture; and Euclid himself could learn from

studying the geometry of my cells." Maraldi
1 The arrangement is uniquely determined only if

one requires the centers to form a lattice. For the

definition of a lattice see p. 96; for a fuller dis-

cussion of the problem: D. Hilbert and S. Cohn-
Vossen, Anschauliche Geometrie, Berlin, 1 932, pp. 40-41

;

arid H. Minkowski, Diophantiscke Approximationen

Leipzig, 1907, pp. 105-111.
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in 1712 seems to be the first to have carried

out fairly exact measurements, and he found

that the three bottom rhombs of the cell have

an obtuse angle a of about 110° and that the

angle /3 they form with the prism walls has

the same value. He asked himself the

geometric question what the angle a of the

rhomb has to be so as to coincide exactly

with the latter angle 0. He finds a = /3 =
109° 28' and thus assumes that the bees had

solved this geometric problem. When prin-

ciples of minimum were introduced into the

study of curves and into mechanics, the idea

was not farfetched that the value of a is deter-

mined by the most economical use of wax;

with every other angle more wax would be

needed to form cells of the same volume.

This conjecture of Reaumur was confirmed

by the Swiss mathematician Samuel Koenig.

Somehow Koenig took Maraldi's theoretical

value for the one he had actually measured,

and finding that his own theoretical value

based on the minimum principle deviated

from it by 2' (owing to an error of the tables

he used in computing \/2) he concluded

that the bees commit an error of less than

2' in solving this minimum problem, of which

he says that it lies beyond the reach of clas-

sical geometry and requires the methods of

Newton and Leibniz. The ensuing discus-

sion in the French Academy was summed up

by Fontenelle as Secretaire perpetuel in a

famous judgment in which he denied to the

bees the geometric intelligence of a Newton

and Leibniz but concluded that in using the

highest mathematics they obeyed divine

guidance and command. In truth the cells

are not as regular as Koenig assumed, it

would be difficult to measure the angles even

within a few degrees. But more than a
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hundred years later Darwin still spoke of the

bees' architecture as "the most wonderful of

known instincts" and adds: "Beyond this

stage of perfection in architecture natural

selection (which now has replaced divine

guidance!) could not lead; for the comb of

the hive-bee, as far as we can see, is abso-

lutely perfect in economizing labor and wax."

When one truncates the six corners of an

octahedron in a suitable symmetric fashion

one obtains a polyhedron bounded by 6

squares and 8 hexagons. This tetrakaideka-

hedron was known to Archimedes and redis-

covered by the Russian crystallographer

Fedorow. Copies of this solid obtained by

suitable translations are capable of filling the

whole space without overlappings and gaps,

just as the rhombic dodecahedron does (Fig.

56). In his Baltimore lectures Lord Kelvin

showed how its faces have to be warped and

edges curved to fulfill the condition of

minimal area. If this is done the partition

of space into equal and parallel tetrakaideka-
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hedra gives even a better economy of surface

in relation to volume than the plane-faced

rhombic dodecahedra. I am inclined to

believe that Lord Kelvin's configuration gives

the absolute minimum; but so far as I know,

this has never been proved.

Let us now return from the three-dimen-

sional space to the two-dimensional plane

and engage in a more systematic investiga-

tion ofsymmetry with double infinite rapport.

First we have to make this notion precise.

As was mentioned before, the translations,

the parallel displacements of a plane form a

group. A translation a can be completely

described by fixing the point A' into which

it carries a given point A. The translation

or vector BB' is the same as the translation

AA' if BB' is parallel to AA' and of the same

length. The composition of translations is

usually denoted by the sign +. Thus

o + b is the translation resulting from first

carrying out a and then b. If a carries the

point A into B and b carries B into C then

c = a + b carries A into C and may thus be

indicated by the diagonal vector AC in the

parallelogram ABCD. Since here AD = BC

= b and DC = AB = a (Fig. 57), we have

the commutative law a + b = b + a for the

FIG. 57
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composition of translations, or, as one also

says, for the addition of vectors. This addi-

tion of vectors is nothing else but the law by

which two forces a, b unite to form a resultant

a -f- b = c according to the so-called paral-

lelogram of forces. We have the identity or

null vector which carries every point into

itself, and every translation a has its inverse

— a such that a + ( — a) = 0. It is obvious

what 2a, 3a, 4a, . . . stand for, namely

a-f-a, a + a-fa, a + a + a + a, etc.

The general rule by which the multiple na is

defined for every integer n, positive, zero, or

negative, is expressed in the formulas

(n + l)a = (na )+ a and Oa = o.

The vector b = ^£a is the unique solution of

the equation 3b = a. Hence it is clear what

Xa means if X is a fraction m/n with integral

numerator m and denominator n, as for in-

stance % or —${3; and then also by con-

tinuity what it means for any real number X,

whether rational or irrational. Two vectors

Ci, C2 are linearly independent if no linear

combination of them x&j + #262 is the null

vector unless the two real numbers x\ and

*2 are zero. The plane is two-dimensional

because every vector 5 can be represented

uniquely as such a linear combination

x\t\ + *2e2 in terms of two fixed linearly in-

dependent vectors d, C2. The coefficients

x\, X2 are called the coordinates of r with

respect to the basis (eg, C2). After fixing a

definite point as origin (and a vector basis

Ci, C2) we can ascribe to every point X two

coordinates xh x2 by OX = x\ti + ^262, and

vice versa these coordinates xi, xz determine

the position of X relative to the "coordinate

system" (0, eg, C2).
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I am sorry that I had to torture you with

these elements of analytic geometry. The

purpose of this invention of Descartes' is

nothing but to give names to the points X in

a plane by which we can distinguish and

recognize them. This has to be done in a

systematic way because there are infinitely

many of them; and it is the more necessary

as points, unlike persons, are all completely

alike, and hence we can distinguish them

only by attaching labels to them .
The names

we employ happen to be pairs of numbers

(xh Xi).

Besides the commutative law, the addition

of vectors—as a matter of fact, the composi-

tion of any transformations—satisfies the as-

sociative law

(a + b) + c = a + (b + c).

For the multiplication of vectors a, b, . .
.

by real numbers X, ix, . . . one has the law

X(Ma) = (Xm)o

and the two distributive laws

(X + m)o = (Xa) + (mo),

X(a + b) = (Xa) + (Xb).

One must ask oneself how the coordinates

(xi, *») of an arbitrary vector r change as

one passes from one vector basis (eg, e2) to

another (ci, e'2) . The vectors ci, c'2 are expres-

sible in terms of d, c2, and vice versa:

(1) ci = fluCi + 02^2, e'2 = 01261 + a-ifa

and

(V) Ci = a'n t'i + a'n t'2, C2 = a'12e[ + ^22*2

Represent the arbitrary vector J in terms of

the one and the other basis:

? = xid + -V2C2 = *iei + x'2t'2 .
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By substituting (1) for t[, t'2 or (1') for e t , e2

one finds that the coordinates xi, x 2 with

respect to the first basis are connected with

the coordinates x[, *2 in the second system

by the two mutually inverse "homogeneous

linear transformations"

(2) xi = anx'i + ai2*2, x2 = a 2 i*i + 022*2;

f r,/\ I 1,1 I 1,1
(2 ) xx

= anxi + a 12*2, *2
= a 2lxi + anx 2 .

The coordinates x vary with the vector y; but

the coefficients

/in, oi2\
(
a'n, <*[ 2\

Y*Ms 022/ \02 i, a 22/

are constants. It is easy to see under what

circumstances a linear transformation like

(2) has an inverse, namely, if and only if its

so-called modul 011^22 — 012021 is different

from 0.

As long as we use no other concepts than

those introduced so far, namely (1) addition

of vectors a + b, (2) multiplication of a vec-

tor a by a number X, (3) the operation by

which two points A,B determine the vector

AB, and concepts logically defined in terms

of them, we do affine geometry. In affine

geometry any vector basis d, e 2 is as good

as any other. The notion of the length |r|

of a vector J transcends affine geometry and

is basic for metric geometry. The square of

the length of an arbitrary vector J is a

quadratic form

(3) £11*1 + 2guX 1X2 + £22*2

of its coordinates xh x2 with constant coeffi-

cients gi U g i2, g22 . This is the essential con-

tent of Pythagoras' theorem. The metric

ground form (3) is positive-definite, namely

its value is positive for any values of the
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variables *i, x2 except for*i = x 2 = 0. There

exist special coordinate systems, the Cartesian

ones, in which this form assumes the simple

expression x\ + x\; they consist of two mu-

tually perpendicular vectors d, l-i of equal

length 1. In metric geometry all Cartesian

coordinate systems are equally admissible.

Transition from one to the other is affected

by an orthogonal transformation, i.e. by a

homogeneous linear transformation (2), (2 )

which leaves the form x\ + x\ unaltered,

1 1 2 /2 1 '2
X\ + X\ = *! + X2 .

But with a slight modification such a trans-

formation may also be interpreted as the

algebraic expression of a rotation. If by a

rotation around the origin the Cartesian

basis Ci, c2 passes into the Cartesian basis e lf

c2 then the vector r = X1C1 + *2e2 g°es into

r' = xxci + x2 c2, and if you write this as

xiei + x'itz, using the original basis (d, e2)

as frame of reference throughout, you see

that the vector with the coordinates *i, *2

goes into that with the coordinates x'u x2

where

x t t[ + x2 e2 = x[t x + x2 e2 ,

and hence

(4) x[ = OllXl + 012*2, *J = ^21*1 + 022*2

[formulas (2) with the pairs (*i, x2), (*i, *2)

interchanged].

If vectors are replaced by points the homo-

geneous linear transformations are replaced

throughout by non-homogeneous ones. Let

(*i, *2), (*i,
*'
2) be the coordinates of the

same arbitrary point X in two coordinate

systems (0; d, c2), {0'\ e(, c2). Then we

have

OX = *id + *2d, O'X = *'xCi + 44

97



and since OX = 00' + O'X:

(5) xi = anx'i + ai2x2 + bi (i = 1, 2)

where we have set 00' = Mi + b 2t2 . The
non-homogeneous differ from homogeneous
transformations by the additional terms bi.

The mapping

(6) x'i = anxi + ai2x2 + bi (i = 1, 2)

carrying the point (xh x2) into the point

(x[, x2) expresses a congruence provided

the homogeneous part of the transformation

(4) x'i = a(1xi + ^2*2 (* » 1, 2),

giving the corresponding mapping of the

vectors, is orthogonal. (Here of course the

coordinates refer to the same fixed coordinate

system.) Under these circumstances we
call also the non-homogeneous transforma-

tion orthogonal. In particular, a transla-

tion by the vector (b h b 2) is expressed by the

transformation

*1 ** *l + ha *2 = x-i + b 2 .

We now return to Leonardo's table of

finite rotation groups in the plane,

(7)
Ci, C2, Cz,

D h D 2 , Z)3 ,

The algebraic expression of the operations

of one of the groups C„ does not depend on
the choice of the Cartesian vector basis.

This is not so for the groups D n \ here we
normalize the algebraic expression by intro-

ducing as the first basic vector Ci one that

lies in one of the reflection axes. A group
of rotations is expressed in terms of the

Cartesian coordinate system as a group of

orthogonal transformations. Its expressions
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in any two such coordinate systems linked by

an orthogonal transformation are, as we shall

say, orthogonally equivalent. Hence what

Leonardo had done can now be formulated

in algebraic language as follows: He made

up a list of groups of orthogonal transforma-

tions such that (1) any two of the groups in

his list are orthogonally inequivalent, and

(2) any finite group of orthogonal trans-

formations is orthogonally equivalent to a

group occurring in his list. We say briefly:

He made up a complete list of orthogonally in-

equivalent finite groups of orthogonal trans-

formations. This seems an unnecessarily in-

volved way of stating a simple situation; but

its advantages will presently become evident.

The symmetry of ornaments is concerned with

discontinuous groups of congruent mappings

of the plane. If such a group A contains

translations it would be absurd to postulate

finiteness, for iteration of a translation a

(different from the identity 0) gives rise to

infinitely many translations na (n = 0, ±1,

±2 • • •)• Therefore we replace finiteness

by discontinuity: it requires that there is no

operation in the group arbitrarily close to

the identity, except the identity itself. In

other words, there is a positive number e

such that any transformation (6) in our group

for which the numbers

(
an — 1, 012, b

an, a22 — 1, b 2;)

lie between -e and +e is the identity (for

which all these numbers are zero). The

translations contained in our group form a

discontinuous group A of translations. For

such a group there are three possibilities:

Either it consists of nothing but the identity,

the null vector 0; or all the translations in
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FIG. 58

:

the group are iterations xt of one basic trans-

lation e 9* a (# « 0, ±1, ±2, • • •); or these

translations (vectors) form a two-dimensional

lattice, namely consist of the linear combina-
tions X\t\ + #2e2 by integral coefficients Xj, x2

of two linearly independent vectors Ci, C2.

The third case is that of double infinite

rapport in which we are interested. Here
the vectors Ci,C2 form what we call a lattice

basis. Choose a point as origin; those

points into which goes by all the transla-

tions of the lattice form a parallelogramatic

lattice of points (Fig. 58).

To what extent, we will ask at once, is the

choice of the lattice basis for a given lattice

arbitrary? If e
1 ,C2 is another such basis we

must have

(1) tx = fluCi -f- fl2iC 2 , e'2 = and + 02262

where the atj are integers. But also the coeffi-

cients in the inverse transformation (1') must
be integers, otherwise el, c'2 would not consti-

tute a lattice basis. For the coordinates one

gets two mutually inverse linear transforma-

tions (2), (2') with integral coefficients

(2") (*»' *A and fa j*\\a 2 i, 022/ \a 21 , a22/

A homogeneous linear transformation with

integral coefficients that has an inverse of the

same type is called unimodular by the mathe-

maticians; one easily sees that a linear trans-

formation with integral coefficients is

unimodular if and only if its modul

fliit»22
— ai2«2i equals +1 or — 1.

In order to determine all possible discon-

tinuous groups of congruences with double

infinite rapport we now proceed as follows.

We choose a point as origin and represent

the translations in our group A by the lattice

I of points into which they carry the point O.

Any operation of our group may be consid-

ered as a rotation around followed by a

translation. The first, the rotary part, then

carries the lattice into itself. Moreover

these rotary parts form a discontinuous, and

hence finite group of rotations T = {A}. In

the terminology of the crystallographers it is

this group which determines the symmetry

class of the ornament. T must be one of the

groups in Leonardo's table (7),

(8) Cn , Dn (n = 1, 2, 3, • • •).

but one whose operations carry the lattice L

into itself. This relationship between the

rotation group T and the lattice L imposes

certain restrictions on both of them.

As far as T is concerned, it excludes from

the table all values of n except n = 1, 2, 3,

4, 6. Notice that n = 5 is among the ex-

cluded values I Since the lattice permits the

rotation by 180°, the smallest rotation leaving

it invariant must be an aliquot part of 180°,

or of the form

360° divided by 2 or 4 or 6 or 8 or .

We must show that the numbers from 8 on are

impossible. Take the case of n = 8 and let

A among all lattice points 9*0 be one that
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FIG. 59

II

A

FIG. 60

is nearest to (Fig. 59). Then the whole

octagon A = Ay, A2, A3, • • • which arises

from A by rotating the plane around

through % of the full angle again and again

consists of lattice points. Since OAi, OA*
are lattice vectors their difference, the vector

A1A2, must also belong to our lattice, or the

point B determined by OB = A XA 2 should

be a lattice point. However this leads to a

contradiction, since B is nearer to than

A = A\, indeed the side A\Ai of the regular

octagon is smaller than its radius QA\.

Hence for the group T we have only these 10

possibilities:

(9) d, C2, C3, C4, C6 ; D h D2, D3, D4 , D,.

It is easy to see that for each of these groups

there actually exist lattices left invariant by

the operations of the group.

Clearly, for d and & any lattice will do,

for any lattice is invariant under the identity

and the rotation by 180°. But let us con-

sider D\, which consists of the identity and

the reflection in an axis / through 0. There

are two types of lattices left invariant by

this group: the rectangular and the diamond
lattices (Fig. 60). The rectangular lattice

is obtained by dividing the plane into equal

rectangles along lines parallel and perpen-

dicular to /. The corners of the rectangles

are the lattice points. A natural basis for

the lattice consists of the two sides Ci, C2

issuing from of the fundamental rectangle

whose left-lower corner is 0. The diamond
lattice consists of equal rhombs into which

the plane is divided by the diagonal lines of

the rectangular lattice. The two sides of the

fundamental rhomb the left corner of which

is may serve as lattice basis. The lattice

points are the corners O and the centers •

of the rectangles. (It was an arrangement

of trees in such a lozenge lattice which

Thomas Browne called quincuncial, thinking

of the quincunx as its elementary
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figure, although the lattice in fact has noth-

ing to do with the number 5.) Shape and

size of the fundamental rectangle or rhomb

are arbitrary.

After having found the 10 possible groups V

of rotations and the lattices L left invariant

by each of them, one has to paste together a

T with a corresponding L so as to obtain

the full group of congruent mappings.

Closer investigation has shown that, while

there are 10 possibilities for T, there are

exactly 17 essentially different possibilities

for the full group of congruences A. Thus

^here are 17 essentially different kinds of

symmetry possible for a two-dimensional

ornament with double infinite rapport.

Examples for all 17 groups of symmetry are

found among the decorative patterns of

antiquity, in particular among the Egyptian

ornaments. One can hardly overestimate

the depth of geometric imagination and

inventiveness reflected in these patterns.

Their construction is far from being mathe-

matically trivial. The art of ornament con-

tains in implicit form the oldest piece of

higher mathematics known to us. To be

sure, the conceptual means for a complete ab-

stract formulation of the underlying prob-

lem, namely the mathematical notion of a

group of transformations, was not provided

before the nineteenth century, and only on

this basis is one able to prove that the 17

symmetries already implicitly known to the
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Egyptian craftsmen exhaust all possibilities.

Strangely enough the proof was carried out

only as late as 1924 by George Polya, now
teaching at Stanford. 2 The Arabs fumbled

around much with the number 5, but they

were of course never able honestly to insert

a central symmetry of 5 in their ornamental

designs of double infinite rapport. They
tried various deceptive compromises, how-
ever. One might say that they proved ex-

perimentally the impossibility of a pentagon

in an ornament.

Whereas it was clear what we meant by

saying that there are no other groups of rota-

tions associable with an invariant lattice than

the 10 groups (9), our assertion of the exist-

ence of not more than 17 different ornamental

groups calls for some explanation. For in-

stance, if T = C\ then the group A is one con-

sisting of translations only; but any lattice

is possible here, the fundamental parallelo-

gram spanned by the two basic vectors of the

lattice may be of any shape and size, we have

the choice in a continuously infinite manifold

of possibilities. In arriving at the number
17 we count all these as one case only; but

with what right? Here I need my analytic

geometry. If we look at our plane in the

light of affine geometry it bears two struc-

tures: (i) the metric structure by which every

vector y has a length the square of which

is expressed in terms of coordinates by a

positive definite quadratic form (3), the

metric ground form; (ii) a lattice structure,

owing to the fact that the ornament endows

the plane with a vector lattice. In the usual

2 Cf. his paper "Ueber die Analogie der Kristall-

symmetrie in der Ebenc," ^eitschr. j. Kristallographie

60, pp. 278-282.
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procedure one takes first the metric structure

into account and thus introduces the Car-

tesian coordinate systems in terms of which

the metric ground form has a unique normal-

ized expression x\ -f- x\, while in the algebraic

representation of the continuous manifold

of invariant lattices there remains a variable

element. But instead of adapting our co-

ordinates to the metric by admitting Car-

tesian coordinates only, we could put the

lattice structure first and adapt the coordi-

nates to the lattice by choosing Ci, e2 as a

lattice basis, with the effect that the lattice

is now normalized in a uniquely determined

manner when expressed in terms of the cor-

responding coordinates xj, *2. Indeed the

lattice vectors are now those whose coordi-

nates are integers. In general we cannot do

both at the same time: have a coordinate

system in which the metric ground form ap-

pears in the normalized form x\ -f- x2 > and

the lattice consists of all vectors with integral

coordinates *i, xi. We now follow the

second procedure, which turns out to be

mathematically more advantageous. I con-

sider this analysis as one which is of basic

importance for all morphology.

As an example consider once more D%.

If the invariant lattice is rectangular and the

lattice basis is chosen in the natural manner

described above, then D\ consists of the

identity and the operation

x
i
— xu x2 = —X2.

The metric ground form can be any positive

form of the special type a xx\ -+- a-ix\. If the

invariant lattice is a diamond lattice and the

sides of the fundamental diamond are chosen
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as the lattice basis, then Di contains the

identity and the further operation

*i = *2, x2 = *i-

The metric ground form may be any positive

form of the special type a(x\ + *l) + 2bx\x2 .

But instead of Di we now obtain two groups

D", D\ of linear transformations with integral

coefficients, which, though orthogonally, are

no longer unimodularly equivalent, the one

consisting of the two operations with the

coefficient matrices

O

n (!4)
the other of

(::>
Two groups of homogeneous linear trans-

formations are, of course, called unimodularly

equivalent if they both represent the same

group of operations, the one in terms of one,

the other in terms of another lattice basis,

i.e. if they change into each other by a uni-

modular transformation of coordinates.

In the lattice-adapted coordinate system

the operations of T now appear as homo-
geneous linear transformations (4) with in-

tegral coefficients aq\ for as each carries the

lattice into itself, x[, x2 assume integral values

whenever integral values are assigned to *i

and x^ The arbitrariness in the choice of

the lattice basis finds its expression by the

agreement to consider unimodularly equiva-

lent groups of linear transformations as the

same thing. Besides having integral coeffi-

cients the transformations of V will leave a

certain positive definite quadratic form (3)

invariant. But this is really no additional

restriction; indeed it can be shown that for
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any finite group of linear transformations

with real coefficients one may construct posi-

tive quadratic forms left invariant under these

transformations. 3 How many different, i.e.

unimodularly inequivalent, finite groups of

linear transformations with integral coeffi-

cients in two variables, exist then? Ten,

namely our old friends (9)? No, there are

more, since we have seen that D\, for instance,

breaks up into two inequivalent cases D\, D v

The same happens to D2 and D 3, with the

result that there are exactly 1 3 unimodularly

inequivalent finite groups of linear operations

with integral coefficients. From a mathe-

matical standpoint this is the really interest-

ing result rather than the table (9) of the

10 groups of rotations with invariant lattices.

In a last step one has to introduce the

translational parts of the operations, and one

obtains 17 unimodularly inequivalent dis-

continuous groups of non-homogeneous lin-

ear transformations which contain all the

translations

x[ = xi + b u x2
= x2 + b 2

with integral b\,b 2 and no other translations.

This last step offers little difficulty, and the

remarks that remain to be made are better

based on the 1 3 finite groups T of homogene-

ous transformations which result from can-

celling the translatory parts.

So far only the lattice structure of the plane

has been taken into account. Of course,

the metric of the plane cannot be ignored

forever. And it is here that the continuous

3 This is a fundamental theorem due to H. Maschke.

The proof is simple enough: Take any positive quad-

ratic form, e.g. x\ + x\, perform on it each of the

transformations 5 of our group and add the forms

thus obtained: the result is an invariant positive form.
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aspect of the problem comes in. For each

of the 13 groups Y there exist invariant

positive quadratic forms

G(x)
= £n*i + 2gi2*i*2 + gaa*f-

Such a form is characterized by its coefficients

(gn, £12, £22)- The form G(x) is not uniquely

determined by T; for instance G(x) may be

replaced by any multiple c • G(x) with a real

positive constant factor c. All positive

quadratic forms G(x) left invariant by the

operations of T form a continuous convex

"cone" of simple nature and of 1, 2, or 3

dimensions. For instance in the cases D"

and D\ we had the two-dimensional manifolds

of all positive forms of the types a\x\ + 02*2

and a{x\ -+- x\) + 2bx&% respectively. The
metric ground form is always one in the

manifold of invariant forms.

In the full description of the ornamental

groups A we have now clearly divided those

features which are discrete, and those capable

of varying over a continuous manifold.

The discrete feature is exhibited by represent-

ing the group in terms of lattice-adapted

coordinates and turns out to be one of 17

definite distinct groups. To each of them

there corresponds a continuum of possibilities

for the metric ground form G(x), from which

the one actual metric ground form must be

picked. The advantage of adapting the co-

ordinate system to the lattice rather than to

the metric . becomes visible in the fact that

now the variable element G(x) varies over

one simple convex continuous manifold,

while in terms of the metric-adapted coordi-

nates the lattice L, which then appears as

the variable element, ranges over a con-

tinuum that may consist of several parts, as

the example of Di showed. The advantage

is fully revealed only if one passes from the

truncated homogeneous group T = [A] to

the full ornamental group A. The splitting

into something discrete and something con-

tinuous seems to me a basic issue in all

morphology, and the morphology of orna-

ments and crystals establishes a paragon by

the clearcut way in which this distinction is

carried out.

After all these somewhat abstract mathe-

matical generalities I am now going to show

you a few pictures of surface ornaments with

double infinite rapport. You find them on

wall papers, carpets, tiled floors, parquets,

all sorts of dress material, especially prints,

and so forth. Once one's eyes are opened,

one will be surprised by the numerous sym-

metric patterns which surround us in our

daily lives. The greatest masters of the

geometric art of ornament were the Arabs.

The wealth of stucco ornaments decorating

the walls of such buildings of Arabic origin

as the Alhambra in Granada is simply

overwhelming.

For the purpose of description it is good to

know what a congruent mapping in two

dimensions looks like. A proper motion may-

be either a translation or a rotation around a

point 0. If such a rotation occurs in our

symmetry group and all the rotations around

occurring in it are multiples of the rotation

by 360°/n, we call a pole of multiplicity n

or simply rc-pole. We know that no other

values except n = 2, 3, 4, 6 are possible.

An improper congruence is either a reflection

in a line /, or such a reflection combined with

a translation a along /. If it occurs in our

group, / is called an axis or gliding axis re-

spectively. In the latter case iteration of the

congruence leads to the translation by the
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FIG. 61

vector 2a; hence the gliding vector a must

be one-half of a lattice vector of our group.

The first picture (Fig. 61) is a drawing of

the hexagonal lattice, the discussion of which

started today's lecture. It has a very rich

symmetry. There are poles of multiplicities

2, 3, and 6, indicated in the diagram by dots,

small triangles, and hexagons respectively.

The vectors joining two 6-poles are the lat-

tice vectors. The lines in the figure are the

axes. There are also gliding axes, which

have not been shown in the drawing; they

run mid-way between and parallel to the

axes. The possible symmetry groups of the

hexagonal type are five in number and are

obtained by putting one of the simple

figures 6 or 6' or 3' or 3a or 3b into each of

the six-poles. Designs 6 and 6' preserve the

multiplicity 6 of these poles, but 6' destroys

no

the symmetry axes. Designs 3', 3a, and 3b

reduce the multiplicity of those poles to 3;

among them 3' is without symmetry axes,

in 3a axes pass through every 3-pole, in 3b

only through those (one-third of the whole

number) which had been six-fold before.

The homogeneous groups are D 6 , C&, Cz, D%,

D\ respectively, where Z>£, D\ are the two

unimodularly inequivalent forms assumed by

D 3 in a lattice-adapted coordinate system.

There now follow some actual ornaments

of Moorish, Egyptian, and Chinese origin.

This window of a mosque in Cairo, of the

fourteenth century (Fig. 62), is of the hexa-

FIG. 62
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gonal class Z) 6 . The elementary figure is a

trefoil knot the various units of which are

interlaced with superb artistry. Almost un-

interrupted tracks cross the design in the

three directions arising from the horizontal

by rotations through 0°, 60°, 120°; the mid-

lines of these tracks are gliding axes. You
can easily discover lines that are ordinary

axes. Such axes are absent from this

Azulejos ornament (Fig. 63) decorating the

back of the alcove in the Sala de Camas of the

FIG. 63

Alhambra in Granada. The group is 3' or

6', according to whether or not one takes

account of the colors. This is one of the

finer tricks of the ornamental art that the

symmetry of the geometric pattern as ex-

pressed by a certain group A is reduced by

the coloring to a lower symmetry expressed

by a subgroup of A. A symmetry of the

square class D 4 is exhibited by this (Fig. 64)

well-known design for brick pavements;

the amusing thing about it is that no ordi-

FIG. 64

nary axes, only gliding axes, pass through

the 4-poles (one of which is marked). Of

the same symmetry is the Egyptian ornament

shown next (Fig. 65), as well as the two fol-

lowing Moorish ornaments (Fig. 66). A

monumental work on our subject is Owen

Jones' Grammar of ornaments, from which

some of these illustrations are taken. Of a

more special character is the Grammar of

Chinese lattice by Daniel Sheets Dye, which

deals with the lattice work the Chinese use for

the support of their paper windows. I repro-

duce here (Figs. 67 and 68) two character-

istic designs from that volume, one of the

hexagonal and one of the Z) 4-type.

FIG. 65
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FIG. 68

I wish I could analyze some of these orna-

ments in detail. But a prerequisite for such

an investigation would be an explicit alge-

braic description of the 17 ornamental

groups. What this lecture aimed at was

more a clarification of the general mathe-

matical principles underlying the morphology

of ornaments (and crystals) than a group-

theoretic analysis of individual ornaments.

Shortness of time has prevented me from

doing justice to both sides, the abstract and

the concrete. I tried to explain the basic

mathematical ideas, and I showed you some

pictures: the bridge between them I indi-

cated, but I could not lead you over it step

by step.

FIG. 67
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CRYSTALS

THE GENERAL MATHEMATICAL

IDEA OF SYMMETRY

In the last lecture we considered for two

dimensions the problem of making up a com-

plete list (i) of all orthogonally inequivalent

finite groups of homogeneous orthogonal

transformations, (ii) of all such groups as

have invariant lattices, (iii) of all unimodu-

larly inequivalent finite groups of homo-

genous transformations with integral coeffi-

cients, (iv) of all unimodularly inequivalent

discontinuous groups of non-homogeneous

linear transformations which contain the

translations with integral coordinates but no

other translations.

Problem (i) was answered by Leonardo's

list

C„, Dn (n = I, 2, 3, • • •)>

(ii) by limiting the index n in it to the values

n = 1, 2, 3, 4, 6. The numbers hi, kn , hm,

hjV of groups in these four lists turned out to

be
oo, 10, 13, 17

respectively. The most important problem

is doubtless (iii). One could have posed

these same four questions for the one-dimen-

sional line rather than the two-dimensional

plane. There the answer would have been

very simple, and one would have found all

the numbers hu kn , hux , hJV, equal to 2. In-

deed in each of the cases (i), (ii), (iii) the

group consists either of the identity x' = x

alone, or of the identity and the reflection

x' = -x.
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But what we are intending now is not to

descend from 2 to 1, but ascend from 2 to

3 dimensions. All finite groups of rotations

in 3 dimensions were listed at the end of the

second lecture; I repeat them here:

List A:

C,„ C„, C2nCn (n = 1, 2, 3, • •)

D'n , D'n , D'2nD'n , D'nCn

(n = 2, 3, • •)

T, W, P; T, W, P; WT.

If one requires that the operations of the

group leave a lattice invariant, only axes of

rotation of multiplicity 2, 3, 4, 6 are admis-

sible. And by this restriction our table re-

duces to the following

List B:

C\, C?, Cz, C*, Ct; Ci, C2 , C3, C4 , Ce;

D'2, Z/3 , D\, D'6 ; £>;, D'3, D'4 , D[;

C2C1, C4C2, CzCa;

D'tD'2 , D'
6D'3 ;

D'2C2 , D'
3C3, D\Ch Dfa;

T, W, T, W, WT.

It contains 32 members. One easily con-

vinces oneself that each of these 32 groups

possesses invariant lattices. In three di-

mensions the numbers hu ku , km, hiv have

the values
* , 32, 70, 230.

In its algebraic formulation our problem

may be posed for any number m of variables,

*i, X2, • • •
, xm instead of just 2 or 3, and

the corresponding theorems of finiteness

have been proved. The methods are of the

greatest mathematical interest. The com-
bination "metric plus lattice" lies at the

bottom of the arithmetical theory of quadratic

forms which, inaugurated by Gauss, played

a central part in the theory of numbers
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throughout the nineteenth century. Dirich-

let, Hermite, and more recently Minkowski

and Siegel have contributed to this line of

research. The investigation of ornamental

symmetry in m dimensions is based on the

results won by these authors and on the

algebraic and the more refined arithmetic

theory of so-called algebras or hypercomplex

number systems, on which the last generation

of algebraists, in this country L. Dickson

above all, have spent much effort.

We decorate surfaces with flat ornaments;

art has never gone in for solid ornaments.

But they are found in nature. The arrange-

ments of atoms in a crystal are such patterns.

The geometric forms of crystals with their

plane surfaces are an intriguing phenomenon

of nature. However the real physical sym-

metry of a crystal is not so much shown by

its outward appearance as by the inner

physical structure of the crystalline substance.

Let us suppose that this substance fills the

entire space. Its macroscopic symmetry will

find its expression in a group Y of rotations.

Only such orientations of the crystal in space

are physically indistinguishable as are carried

into each other by a rotation of this group.

For example, light, which in general propa-

gates with different velocities in different di-

rections in the crystalline medium, will

propagate with the same speed in any two

directions that arise from each other by a

rotation of the group T. So for all other

physical properties. For an isotropic me-

dium the group V consists of all rotations,

but for a crystal it is made up of a finite

number of rotations, sometimes even of

nothing but the identity. Early in the his-

tory of crystallography the law of rational

indices was derived from the arrangement of
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the plane surfaces of crystals. It led to the

hypothesis of the lattice-like atomic structure

of crystals. This hypothesis, which explains

the law of rational indices, has now been

definitely confirmed by the Laue interference

patterns, which are essentially X-ray photo-

graphs of crystals.

More exactly the hypothesis states that the

discontinuous group A of congruences which

carry the arrangement of atoms in our

crystal into itself contains the maximum
number 3 of linearly independent transla-

tions. Incidentally this hypothesis can be

reduced to much simpler requirements.

Atoms which go over into each other by an

operation of A may be called equivalent.

The equivalent atoms form a regular point-

set in the sense that the set is carried into

itself by every operation of A and that for

any two points in the set there is an operation

of A which carries the one into the other.

Speaking of the arrangements of atoms I

refer to their positions in equilibrium; in

fact the atoms oscillate around these posi-

tions. Perhaps one should take a lead from

quantum mechanics and substitute for the

atoms' exact positions their average distribu-

tion density: this density function in space

is invariant with respect to the operations of

A. The group r = {Aj of the rotational,

parts of those congruences that are members

of A leaves the lattice L of points invariant

which arise from the origin by the transla-

tions contained in A. The resulting 32 pos-

sibilities for T enumerated in List B corre-

spond to the 32 existing symmetry classes of

crystals. For the group A itself we have 230

distinct possibilities, as was mentioned above.

'

1 See for instance P. Niggli, Geometrische Kristal-

lographie des Diskontinuums, Berlin, 1920.
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While r = {A} describes the manifest macro-

scopic spatial and physical symmetry, A de-

fines the microscopic atomic symmetry hid-

den behind it. You probably all know on

what the success of von Laue's photography

of crystals depends. The image of an object

traced by light of a certain wave length will

be fairly accurate only with respect to details

of considerably greater dimensions than that

wave length, whereas details of smaller di-

mensions are leveled down. Now the wave

length of ordinary light is about a thousand

times as big as the atomic distances. How-

ever X-rays are light rays the wave length

of which is exactly of the desirable order 10~8

centimeters. In this way von Laue killed

two birds with one stone: he confirmed the

lattice structure of crystals, and proved what

had been merely a tentative hypothesis at the

time of his discovery (1912), that X-rays

consist of shortwave light. Even so, the

portraits of the atomic pattern which his dia-

grams show are not likenesses in the literal

sense. By observing a slit whose width is

only a few wave lengths, you obtain a some-

what contorted image of the slit made up by

interference fringes. In the same sense these

Laue diagrams are interference patterns of

the atomic lattice. Yet one is able to com-

pute from such photographs the actual ar-

rangement of atoms, the scale being set by

the wave length of the illuminating X-rays.

Here are two Laue diagrams (Figs. 69 and

70), both of zinc-blende from Laue's original

paper (1912); the pictures are taken in

such directions as to exhibit the symmetry

around an axis of order 4 and 3 respectively.

Whereas in the oral lecture I could show

various three-dimensional (enlarged) models

of the actual arrangement of atoms, a photo-
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FIG. 69

FIG. 70

FIG. 71

graph of one such model (Fig. 71) must suffice

for this printed text: it represents a small part

of an Anatas crystal of the chemical constitu-

tion TiO%\ the light balls are the Ti-, the

dark ones the 0-atoms.

In spite of all contortion which mars our

X-ray likenesses, the symmetry of the crystal

is faithfully portrayed. This is a special case

of the following general principle: If condi-

tions which uniquely determine their effect

possess certain symmetries, then the effect

will exhibit the same symmetry. Thus

Archimedes concluded a priori that equal

weights balance in scales of equal arms.

Indeed the whole configuration is symmetric

with respect to the midplane of the scales,

and therefore it is impossible that one mounts

while the other sinks. For the same reason
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we may be sure that in casting dice which

are perfect cubes, each side has the same
chance, %. Sometimes we are thus enabled

to make predictions a priori on account of

symmetry for special cases, while the general

case, as for instance the law of equilibrium

for scales with arms of different lengths, can

only be settled by experience or by physical

principles ultimately based on experience.

As far as I see, all a priori statements in

physics have their origin in symmetry.

To this epistemological remark about

symmetry I add a second. The morpho-

logical laws of crystals are today understood

in terms of atomic dynamics: if equal atoms

exert forces upon each other that make pos-

sible a definite state of equilibrium for the

atomic ensemble, then the atoms in equi-

librium will of necessity arrange themselves

in a regular system of points. The nature

of the atoms composing the crystal determines

under given external conditions their metric

disposition, for which the purely morpho-

logical investigation summed up in the 230

groups of symmetry A had still left a con-

tinuous range of possibilities. The dynamics

of the crystal lattice is also responsible for

the crystal's physical behavior, in particular

for the manner of its growth, and this in turn

determines the peculiar shape it assumes

under the influence of environmental factors.

No wonder then that crystals actually occur-

ring in nature display the possible types of

symmetry in that abundance of different

forms at which Hans Castorp on his Magic
Mountain marvelled. The visible charac-

teristics of physical objects usually are the

results of constitution and environment.

Whether water, whose molecule has a definite

chemical constitution, is solid, liquid, or

vaporous depends on temperature. Tem-

perature is the environmental factor kat'

exochen. The examples of crystallography,

chemistry, and genetics cause one to suspect

that this duality, described by the biologists

as that of genotype and phenotype or of

nature and nurture, is in some way bound up

with the distinction between discrete and

continuous; and we have seen how such a

splitting into the discrete and the continuous

can be carried out for the characteristic

features of crystals in a most convincing way.

But I will not deny that the general prob-

lem is in need of further epistemological

clarification.

It is high time for me now to close the dis-

cussion of geometric symmetries dwelling in

ornaments and crystals. The chief aim of

this last lecture is to show the principle of

symmetry at work in questions of physics

and mathematics of a far more fundamental

nature, and to rise from these and its previous

applications to a final general statement of

the principle itself.

What the theory of relativity has to do with

symmetry was briefly explained in the first

lecture: before one studies geometric forms

in space with regard to their symmetry one

must examine the structure of space itself

under the same aspect. Empty space has a

very high grade of symmetry: every point is

like any other, and at a point there is no

intrinsic difference between the several

directions. I told you that Leibniz had

given the geometric notion of similarity this

philosophical twist: Similar, he said, are

two things which are indiscernible when each

is considered by itself. Thus two squares in

the same plane may show many differences

when one regards their relation to each other;
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for instance, the sides of the one may be in-

clined by 34° against the sides of the other.

But if each is taken by itself, any objective

statement made about one will hold for the

other; in this sense they are indiscernible and

hence similar. What requirements an ob-

jective statement has to meet I shall illustrate

by the meaning of the word "vertical."

Contrary to Epicurus we moderns do not

consider the statement about a line that it is

vertical to be an objective one, because we
see in it an abbreviation of the more complete

statement that the line has the direction of

gravity at a certain point P. Thus the

gravitational field enters into the proposition

as a contingent factor, and moreover there

enters into it an individually exhibited point

P on which we lay the finger by a demon-

strative act as is expressed in words like I,

here, now, this. Hence Epicurus' belief is

shattered as soon as it is realized that the

direction of gravity is different here at the

place where I live and at the place where

Stalin lives, and that it can also be changed

by a redistribution of matter.

Let these brief remarks suffice here instead

of a more thorough analysis of objectivity.

In concreto, as far as geometry is concerned,

we have followed Helmholtz in adopting as

the one basic objective relation in space that

of congruence. At the beginning of the

second lecture we spoke of the group of con-

gruent transformations, which is contained

as a subgroup in the group of all similarities.

Before going on I wish to clarify a little further

the relationship of these two groups. For

there is the disquieting question of the rela-

tivity of length.

In ordinary geometry length is relative: a

building and a small-scale model of it are
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similar; the dilatations are included among

the automorphisms. But physics has re-

vealed that an absolute standard length is

built into the constitution of the atom, or

rather into that of the elementary particles,

in particular the electron with its definite

charge and mass. This atomic standard

length becomes available for practical meas-

urements through the wave lengths of the

spectral lines of the light emitted by atoms.

The absolute standard thus derived from

nature itself is much better than the conven-

tional standard of the platinum-iridium

meter bar kept in the vaults of the Comite

International des Poids et Mesures in Paris.

I think the real situation has to be described

as follows. Relative to a complete system

of reference not only the points in space but

also all physical quantities can be fixed by

numbers. Two systems of reference are

equally admissible if in both of them all

universal geometric and physical laws of

nature have the same algebraic expression.

The transformations mediating between such

equally admissible systems of reference form

the group of physical automorphisms; the laws

of nature are invariant with respect to the

transformations of this group. It is a fact

that a transformation of this group is uniquely

determined by that part of it that concerns the

coordinates of space points. Thus we can

speak of the physical automorphisms of space.

Their group does not include the dilatations,

because the atomic laws fix an absolute

length, but it contains the reflections because

no law of nature indicates an intrinsic dif-

ference between left and right. Hence the

group of physical automorphisms is the group

of all proper and improper congruent map-

pings. If we call two configurations in space
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congruent provided they are carried over

into each other by a transformation of this

group, then bodies which are mirror images

of each other are congruent. I think it is

necessary to substitute this definition of con-

gruence for that depending on the motion

of rigid bodies, for reasons similar to those

which induce the physicist to substitute the

thermodynamical definition of temperature

for an ordinary thermometer. Once the

group of physical automorphisms = con-

gruent mappings has been established, one

may define geometry as the science dealing

with the relation of congruence between

spatial figures, and then the geometric auto-

morphisms would be those transformations of

space which carry any two congruent figures

into congruent figures—and one need not be

surprised, as Kant was, that this group of

geometric automorphisms is wider than that

of physical automorphisms and includes the

dilatations.

All these considerations are deficient in one

respect: they ignore that physical occurrences

happen not only in space but in space and time;

the world is spread out not as a three- but

as a four-dimensional continuum. The sym-

metry, relativity, or homogeneity of this four-

dimensional medium was first correctly de-

scribed by Einstein. Has the statement, we
ask, that two events occur at the same place

an objective significance? We are inclined

to say yes; but it is clear, if we do so, we
understand position as position relative to

the earth on which we spend our life. But

is it sure that the earth rests? Even our

youngsters are now told in school that it

rotates and that it moves about in space.

Newton wrote his treatise Philosophiae na-

turalis principia mathematica to answer this
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question, to deduce, as he said, the absolute

motion of bodies from their differences, the

observable relative motions, and from the

forces acting upon the bodies. But although

he firmly believed in absolute space, i.e. in

the objectivity of the statement that two

events occur in the same place, he did not

succeed in objectively distinguishing rest of

a mass point from all other possible motions,

but only motion in a straight line with uni-

form velocity, the so-called uniform transla-

tion, from all other motions. Again, has

the statement that two events occur at the

same time (but at different places, say here

and on Sirius) objective meaning? Until

Einstein, people said yes. The basis of this

conviction is obviously people's habit of con-

sidering an event as happening at the moment

when they observe it. But the foundation

of this belief was long ago shattered by Olaf

Roemer's discovery that light propagates not

instantaneously but with finite velocity.

Thus one came to realize that in the four-

dimensional continuum of space-time only

the coincidence of two world points, "here-

now," or their immediate vicinity has a

directiy verifiable meaning. But whether a

stratification of this four-dimensional con-

tinuum in three-dimensional layers of simul-

taneity and a cross-fibration of one-dimen-

sional fibers, the world-lines of points resting

in space, describe objective features of the

world's structure became doubtful. What

Einstein did was this: without bias he col-

lected all the physical evidence we have about

the real structure of the four-dimensional

space-time continuum and thus derived its

true group of automorphisms. It is called

the Lorentz group after the Dutch physicist

H. A. Lorentz who, as Einstein's John the
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Baptist, prepared the way for the gospel of

relativity. It turned out that according to

this group there are neither invariant layers

of simultaneity nor invariant fibers of rest.

The light cone, the locus of all world-points

in which a light signal given at a definite

world-point 0, "here-now," is received,

divides the world into future and past, into

that part of the world which can still be in-

fluenced by what I do at and the part

which cannot. This means that no effect

travels faster than light, and that the world

has an objective causal structure described

by these light cones issuing from every world

point 0. Here is not the place to write

down the Lorentz transformations and to

sketch how special relativity theory with its

fixed causal and inertial structure gave way
to general relativity where these structures

have become flexible by their interaction

with matter. 2
I only want to point out that

it is the inherent symmetry of the four-

dimensional continuum of space and time

that relativity deals with.

We found that objectivity means invariancc

with respect to the group of automorphisms.

Reality may not always give a clear answer

to the question what the actual group of

automorphisms is, and for the purpose of

some investigations it may be quite useful to

replace it by a wider group. For instance

in plane geometry we may be interested only

in such relations as are invariant under

parallel or central projections; this is the

origin of affine and projective geometry.

The mathematician will prepare for all such

2 One may compare my recent lecture at the

Munich meeting of the Gesellschaft deutscher

Naturforscher: "50 Jahre Relativitatstheorie," Die

Naturwissenschqften 38 (1951), pp. 73-83.
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eventualities by posing the general problem,

how for a given group of transformations to

find its invariants (invariant relations, in-

variant quantities, etc.), and by solving it

for the more important special groups

—

whether these groups are known or are not

known to be the groups of automorphisms for

certain fields suggested by nature. This is

what Felix Klein called "a geometry" in

the abstract sense. A geometry, Klein said,

is defined by a group of transformations, and

investigates everything that is invariant under

the transformations of this given group. Of

symmetry one speaks with respect to a sub-

group 7 of the total group. Finite sub-

groups deserve special attention. A figure,

i.e. any point-set, has the peculiar kind of

symmetry defined by the subgroup y if it

goes over into itself by the transformations

of 7-

The two great events in twentieth century-

physics are the rise of relativity theory and of

quantum mechanics. Is there also some con-

nection between quantum mechanics and

symmetry? Yes indeed. Symmetry plays a

great role in ordering the atomic and molecu-

lar spectra, for the understanding of which

the principles of quantum physics provide

the key. An enormous amount of empirical

material concerning the spectral lines, their

wave lengths, and the regularities in their

arrangement had been collected before

quantum physics scored its first success;

this success consisted in deriving the law

of the so-called Balmer series in the spectrum

of the hydrogen atom and in showing how

the characteristic constant entering into that

law is related to charge and mass of the elec-

tron and Planck's famous constant of action

h. Since then the interpretation of the
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spectra has accompanied the development of

quantum physics; and the decisive new fea-

tures, the electronic spin and Pauli's strange

exclusion principle, were discovered in this

way. It turned out that, once these founda-

tions had been laid, symmetry could be of

great help in elucidating the general char-

acter of the spectra.

Approximately, an atom is a cloud of elec-

trons, say of n electrons, moving around a

fixed nucleus in 0. I say approximately, since

the assumption that the nucleus is fixed is

not exactly true and is even less justified than

treatment of the sun as the fixed center of our

planetary system. For the mass of the sun

is 300,000 times as big as that of an individual

planet like Earth, whereas the proton, the

nucleus of the hydrogen atom, is less than

2000 times as heavy as the electron. Even

so it is a good approximation! We dis-

tinguish the n electrons by attaching the

labels 1,2, • • •
, n to them; they enter into

the laws ruling their motion by the coordi-

nates of their positions Ph •
, Pn with

respect to a Cartesian coordinate system with

origin 0. The symmetry prevailing is two-

fold. First we must have invariance with

respect to transition from one Cartesian co-

ordinate system to another; this symmetry

comes from the rotational symmetry of space

and is expressed by the group of geometric

rotations about O. Secondly, all electrons

are alike; the distinction by their labels

1,2, • • • ,n is one not by essence, but by name
only: two constellations of electrons that arise

from each other by an arbitrary permutation

of the electrons are indiscernible. A permu-

tation consists of a re-arrangement of the

labels; it is really a one-to-one mapping of

the set of labels (1, 2, • •
, n) into itself,
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or if you will, of the corresponding set of

points (Pi, • • •
, Pn). Thus, for example,

in case of n = 5 electrons the laws must be

unaffected if the points Ph P2, P3, P\, P& are

replaced by P3, P6, P2, Pi, P* [permutation

1-+3, 2-+ 5, 3-»2, 4->l, 5 -> 4]. The

permutations form a group of order n\ =

1 • 2 • • • n, and the second kind of sym-

metry is expressed by this group of permuta-

tions. Quantum mechanics represents the

state of a physical system by a vector in a

space of many, actually of infinitely many,

dimensions. Two states that arise from each

other, either by a virtual rotation of the

system of electrons or by one of their permu-

tations, are connected by a linear transforma-

tion associated with that rotation or that

permutation. Hence the profoundest and

most systematic part of group theory, the

theory of representations of a group by linear

transformations, comes into play here, I

must refrain from giving you a more precise

account of this difficult subject. But here

symmetry once more has proved the clue to a

field of great variety and importance.

From art, from biology, from crystal-

lography and physics I finally turn to mathe-

matics, which I must include all the more be-

cause the essential concepts, especially that

of a group, were first developed from their

applications in mathematics, more particu-

larly in the theory of algebraic equations.

An algebraist is a man who deals in numbers,

but the only operations he is able to perform

are the four species +, — , X, *-. The

numbers which arise by the four species

from and 1 are the rational numbers.

The field F of these numbers is closed with

respect to the four species, i.e. sum, differ-

ence, and product of two rational numbers
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are rational numbers, and so is their quotient

provided the divisor is different from zero.

Thus the algebraist would have had no rea-

son to step outside this domain F, had not the

demands of geometry and physics forced

the mathematicians to engage in the dire

business of analysing continuity ;nd to embed

the rational numbers in the continuum of all

real numbers. This necessity first appeared

when the Greeks discovered that the diagonal

and side of a square are incommensurable.

Not long afterwards Eudoxus formulated the

general principles on which to base the con-

struction of a system of real numbers suitable

for all measurements. Then during the

Renaissance the problem of solving algebraic

equations led to the introduction of complex

numbers a -f- hi with real components (a,b).

The mystery that first shrouded them and

their imaginary unit i — y/— 1 was com-

pletely dissolved when one recognized that

they are nothing but pairs (a, b) of ordinary

real numbers, pairs for which addition and

multiplication are so defined as to preserve

all the familiar laws of arithmetics. This

can indeed be done in such a way that any

real number a may be identified with the

complex number (a, 0) and that the square

i i = z'

2 of i = (0, 1) equals —1, more ex-

plicitly ( — 1,0). Thus the equation x2+l =0
not solvable by any real number x be-

came solvable. At the beginning of the

nineteenth century it was proved that the

introduction of the complex numbers had

made solvable not only this but all algebraic

equations: the equation

(1) /(*)-
xn -f fli*"-

1 +- aoxn
~2

-f- + a n-ix + a n =

for the unknown .v, whatever its degree n and

its coefficients a v , has n solutions, or "roots"

(as one is wont to say) i?i, #2, ' ' '
> #n, so

that the polynomial f(x) itself decomposes

into the n factors

/(*) = (x- *!)(* -*)•••(*- *»)•

Here a: is a variable or indeterminate, and the

equation is to be interpreted as stating that

the two polynomials on either side coincide

coefficient for coefficient.

Such relations between two indetermi-

nate numbers x, y as the algebraist is able

to construct with his operations of addi-

tion and multiplication can always be

brought into the form R(x, y) = where the

function R(x, y) of the two variables x, y is a

polynomial, i.e. a finite sum of monomials

of the type

a»W (Mj » = 0, 1, 2, • • •)

with rational coefficients aM ,. These rela-

tions are the "objective relations" accessible

to him. Given two complex numbers a,

he will therefore ask what polynomials

R(x, y) with rational coefficients exist which

get annulled by substituting the value a for

the indeterminate x and ior y. From two

one may pass to any number of given com-

plex numbers #1, - * - , 0» The algebraist

will ask for the automorphisms of this set 2

of numbers, namely for those permutations

of #!,••, #n which destroy none of

the algebraic relations /?(#i,
!

' ,#n) =
existing between them. Here R(xu • • •

, xn)

is any polynomial with rational coeffi-

cients of the n indeterminates xi, •
, xn

which is annulled by substituting the values

&h • •
, #„ for *i, • • •

, x n . The auto-

morphisms form a group which is called the

Galois group, after the French mathematician
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Evariste Galois (1811-1832). As this de-

scription shows, Galois' theory is nothing else

but the relativity theory for the set 2, a set

which, by its discrete and finite character, is

conceptually so much simpler than the infi-

nite set of points in space or space-time dealt

with by ordinary relativity theory. We stay

entirely within the confines of algebra when

we assume in particular that the members

t? l5
• • •

, #n of the set 2 are defined as the

n roots of an algebraic equation (1 ),/(*) = 0,

of nth. degree, with rational coefficients a v .

One then speaks of the Galois group of the

equation j{x) = 0. It may be difficult

enough to determine the group, requiring

as it does a survey of all polynomials

R(xh • ,xn) satisfying certain conditions.

But once it has been ascertained one can

learn from the structure of this group a lot

about the natural procedures by which to

solve the equation. Galois' ideas, which for

several decades remained a book with seven

seals but later exerted a more and more

profound influence upon the whole develop-

ment of mathematics, are contained in a

farewell letter written to a friend on the eve

of his death, which he met in a silly duel at

the age of twenty-one. This letter, ifjudged

by the novelty and profundity of ideas it con-

tains, is perhaps the most substantial piece

of writing in the whole literature of mankind.

I give two examples of Galois' theory.

The first is taken from antiquity. The

ratio V2 between diagonal and side of a

square is determined by the quadratic equa-

tion with rational coefficients

(2) x1 - 2 = 0.

Its two roots are #i = \/2 and # 2 = — &i =
- V2,
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x 2 - 2 = (x - V2)(* + V2).

As I mentioned a moment ago, they are ir-

rational. The deep impression which this

discovery, ascribed to the school of Pythag-

oras, made on the thinkers of antiquity is

evidenced by a number of passages in Plato's

dialogues. It was this insight which forced

the Greeks to couch the general doctrine of

quantities in geometric rather than algebraic

terms. Let R(xh xz) be a polynomial of

x h xi with rational coefficients vanishing

(i.e. assuming the value zero) tor x\ = #i,

X2 = # 2 . The question is whether /?(# 2, #i)

is also zero. If we can show that the

answer is affirmative for every R then the

transposition

(3) d 0! # 2 ->th

is an automorphism as well as the identity

r?x —> t?!, t? 2
—* #2- The proof runs as follows.

The polynomial R{x, —x) of one indeter-

minate x vanishes for x = t?i. Its division

by x2 - 2,

R(x, -x) = (X* - 2) • d(x) + (ax + b)

leaves a remainder ax + b of degree 1 with

rational coefficients a, b. Substitute #i for

x: the resulting equation a&i +- b = con-

tradicts the irrational nature of t?i = \/2

unless a = 0, b = 0. Hence

R(x, -x) = (x2 - 2) • £(*),

and consequently R(&2, #i) = R(&2, —di) =

0. Thus the fact that the group of auto-

morphisms contains the transposition (3)

besides the identity is equivalent to the irra-

tionality of y/l.

My other example is Gauss' construction

of the regular 17-gon with ruler and compass,
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which he found as a young lad of nineteen.

Up to then he had vacillated between clas-

sical philology and mathematics; this success

was instrumental in bringing about his final

decision in favor of mathematics. In a plane

we represent any complex number z =

x + yi by the point with the real Cartesian

coordinates (x,y). The algebraic equation

tf - 1 =*

has p roots which form the vertices of a regu-

lar p-gon. z = 1 is one vertex; and since

(z» - 1) -
(z- \)'(zp- 1 + s"-

2 + ' ' ' +* + l).

the others are the roots of the equation

(4) z 1" 1 + • • • + Z + 1 = 0.

If p is a prime number, as we shall now as-

sume, they are algebraically indiscernible

FIG. 72

and the group of automorphisms for the p — 1

roots is a cyclic group of order p — 1. I

describe the situation for the case p = 17.

The left 17-point dial (see Fig. 72) shows the

labeling of the vertices, the right 16-point

dial the 1 6 roots of (4) in a mysterious cyclic

140

arrangement: the dialing of this diagram,

i.e. iteration of its rotation by 3^6 of the whole

periphery, gives the 16 automorphisms as

permutations among the 16 roots. This

group Cie evidently has a subgroup Cs of

index 2; it is obtained by turning the dial

through 3^> %, %> ' " ' of the full angle.

By repeating this process of skipping alternate

points we find a chain of consecutive sub-

groups O means "contains")

C16 DCsDCtDCzDd
which starts with the full group Ci6 and ends

with the group C\ consisting of the identity

only, a chain in which each group is contained

in the preceding one as a subgroup of index 2.

Due to this circumstance one can determine

the roots of the equation (4) by a chain of 4

consecutive equations of degree 2. Equa-

tions of degree 2, quadratic equations, are

solved (as the Sumerians already knew)

by extraction of square roots. Hence the

solution of our problem requires, besides the

rational operations of addition, subtraction,

multiplication, and division, four consecu-

tive extractions of square roots. However,

the four species and extraction of a square

root are exactly those algebraic operations

which may geometrically be carried out by

ruler and compass. This is the reason why the

regular triangle, pentagon and 17-gon,

p = 3, 5, and 17, may be constructed by

ruler and compass; for in each of these cases

the group of automorphisms is a cyclic group

whose order p — 1 is a power of 2,

3 = 2 1 + 1, 5 = 22 + l, 17 = 2 4 + 1.

It is amusing to observe that, whereas the

(obvious) geometric symmetry of the 17-gon

is described by a cyclic group of order 17,
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its (hidden) algebraic symmetry, which deter-

mines its constructibility, is described by one

of order 16. It is certain that the regular

heptagon is not constructible nor are the

regular polygons with 1 1 and 1 3 sides.

Only if p is a prime number such that

P — 1 is a power of 2, p — 1 = 2 n
, then,

according to Gauss's analysis, the regular

p-gon is constructible by ruler and compass.

However, p = 2" + 1 cannot be a prime

number unless the exponent n is a power of 2.

For assume that 2* is the exact power of 2

by which n is divisible, so that n = 2" • m
where m is an odd number. Put 2 2 " = a;

then 2n + 1 = am + 1 • But for odd m the

number am -\- 1 is divisible by a + 1,

(a + IK*"'-' - a"1"2 + • • • - a + 1),

and hence a composite number with the

factor a + 1 , unless /w = 1 . Therefore the

next number of the form 2" + 1 after 3, 5,

and 17 which has a chance to be a prime

number is 2 8
-f 1 = 257. As this is actually

a prime number, the regular 257-gon is con-

structible by ruler and compass.

Galois' theory may be put in a slightly dif-

ferent form, as I shall illustrate by the equa-

tion (2). Let us consider all numbers of the

form a = a + b y/2 with rational compo-

nents a, b; we call them the numbers of the

field {\/2}- Because of the irrationality of

\/2 such a number is zero only if a = 0,

b = 0. Consequently the rational compo-

nents a, b are uniquely determined by a, for

a + b \/2 = ai + fa y/l yields

(a - oi) + (b - bi) \/2 = 0;

a — a\ = 0, b — b\ =

or a = a i, b = bi, provided a,b and a u bi are
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rational. Obviously addition, subtraction,

and multiplication of two numbers of the

field give rise to a number of the field. Nor
does the operation of division lead beyond

the field. For let a = a -f- b \/2 be a num-
ber of the field different from zero with the

rational components a, b and let a' =
a — b y/2 be its "conjugate." Because 2 is

not the square \>f a rational number, the so-

called norm of a, the rational number act =
a 2 — 2b 2

, is different from zero, and therefore

one obtains the reciprocal - of a as a number

in the field as follows:

1 ct a - bV2
a aa! ' a 2 - 2b 2 '

Thus the field { \/2\ is closed with respect to

the operations of addition, subtraction, multi-

plication, and division, with the self-under-

stood exclusion of division by zero. We may
now ask for the automorphisms of such a

field. An automorphism would be a one-to-

one mapping a —> a* of the numbers of the

field such that a + /3 and a • /3 go into

a* -\- 0* and a* ' /3* respectively, for any

numbers a, /3 in the field. It follows at

once that an automorphism changes every

rational number into itself and \/2 into a

number # satisfying the equation #2 — 2 = 0,

thus either into y/2 or — \/2. Hence

there are only two possible automorphisms,

the one which carries every number a of the

field
{
\/2} into itself, and the other carrying

any number a = a + b y/2 into its conju-

gate a' = a — b y/2. It is evident that this

second operation is an automorphism, and

one has thus determined the group of all

automorphisms for the field { \/2\.

A field is perhaps the simplest algebraic
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structure we can invent. Its elements are

numbers. Characteristic for its structure are

the operations of addition and multiplication.

These operations satisfy certain axioms,

among them those that guarantee a unique

inversion of addition, called subtraction, and

a unique inversion of multiplication (pro-

vided the multiplier is different from zero),

called division. Space is another example of

an entity endowed with a structure. Here

the elements are points, and the structure is

established in terms of certain basic relations

between points such as: A, B, C lie on a

straight line, AB is congruent CD, and the

like. What we learn from our whole discus-

sion and what has indeed become a guiding

principle in modern mathematics is this

lesson: Whenever you have to do with a structure-

endowed entity 2 try to determine its group of

automorphisms, the group of those element-wise

transformations which leave all structural re-

lations undisturbed. You can expect to gain

a deep insight into the constitution of 2 in

this way. After that you may start to investi-

gate symmetric configurations of elements, i.e.

configurations which are invariant under a

certain subgroup of the group of all auto-

morphisms; and it may be advisable, before

looking for such configurations, to study the

subgroups themselves, e.g. the subgroup of

those automorphisms which leave one ele-

ment fixed, or leave two distinct elements

fixed, and investigate what discontinuous

or finite subgroups there exist, and so forth.

In the study of groups of transformations

one does well to stress the mere structure of

such a group. This is accomplished by at-

taching arbitrary labels to its elements and

then expressing in terms of these labels for any

two group elements s, t what the result u = st
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of their composition is. If the group is

finite one could tabulate the composition of

elements. The group scheme or abstract

group thus obtained is itself a structural

entity, its structure represented by the law

or table of composition for its elements,

st = u. Here the dog bites into its own tail,

and maybe that is a clear enough warning for

us to stop. Indeed one may ask with re-

spect to a given abstract group: What is the

group of its automorphisms, what are the

one-to-one mappings s —* s' of the group into

itself which make st go over into s't' while

the arbitrary elements s, t go over into /, /'

respectively?

Symmetry is a vast subject, significant in

art and nature. Mathematics lies at its root,

and it would be hard to find a better one on

which to demonstrate the working of the

mathematical intellect. I hope I have not

completely failed in giving you an indication

of its many ramifications, and in leading you

up the ladder from intuitive concepts to

abstract ideas.
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APPENDIX A

DETERMINATION OF ALL FINITE GROUPS OF PROPER

ROTATIONS IN 3-SPACE (cf. p. 77).

A simple proof for the completeness of the

list (5) in Lecture II is based on the fact

first established by Leonhard Euler in the

eighteenth century that every proper* rotation

in 3-space which is not the identity / is rota-

tion around an axis, i.e. it leaves fixed not

only the origin but every point on a cer-

tain straight line through 0, the axis /. It

is sufficient to consider the two-dimensional

sphere 2 of unit radius around instead of

the three-dimensional space; for every rota-

tion carries 2 into itself and thus is a one-to-

one mapping of 2 into itself. Every proper

rotation 9* / has two fixed points on 2 which

are antipodes of each other, namely the points

where the axis / pierces the sphere.

Given a finite group T of proper rotations of

order N, we consider the fixed points of the

TV — 1 operations of T which are different

from /. We call them poles. Each pole p

has a definite multiplicity v (= 2 or 3 or 4

or • • -) : The operations 5" of our group

which leave p invariant consist of the itera-

tions of the rotation around the corresponding

axis by 360°/"i and hence there are exactly v

such operations S. They form a cyclic sub-

group T p of order v. One of these operations

is the identity, hence the number of opera-

tions 9* I leaving p fixed amounts to v — 1

.

For any point p on the sphere we may con-

sider the finite set C of those points q into

which p is carried by the operations of the

group; we call them points equivalent to p.
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Because T is a group this equivalence is of

the nature of an equality, i.e. the point p is

equivalent to itself; if q is equivalent to p
then p is equivalent to q; and if both q\ and

qz are equivalent to p then q\ and q2 are

equivalent among each other. We speak of

our set as a class of equivalent points; any

point of the class may serve as its representa-

tive p inasmuch as the class contains with p

all the points equivalent to p and no others.

While the points of a sphere are indiscernible

under the group of all proper rotations, the

points of a class remain even indiscernible

after this group has been limited to the

finite subgroup V.

Of how many points does the class Cp of

the points equivalent to p consist? The

answer: of JV points, that naturally sug-

gests itself, is correct provided / is the only

operation of the group which leaves p fixed.

For then any two different operations ShS2

of T carry p into two different points q\ = pS\,

qi = pS2 since their coincidence q\ = q%

would imply that the operation S\S2
~ X carries

p into itself, and would thus lead to S\S2
~ X = /,

S\ = S2 . But suppose now that p is a pole of

multiplicity v so that v operations of the group

carry p into itself. Then, I maintain, the

number of points q of which the class Cp con-

sists equals N/v.

Proof: Since the points of the class are in-

discernible even under the given group T,

each must be of the same multiplicity v.

Let us first demonstrate this explicitly. If

the operation L of V carries p into q then

L~ XSL carries q into q provided 5 carries p

into p. Vice versa, if T is any operation of

T carrying q into itself then S = LTL~ X

carries
f>

into p and hence T is of the form

L~ XSL where S is an element of the group T v .
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Thus if Si = I, S2,
• •

, Sy are the v ele-

ments leaving p fixed then

Ti = L~ XS XL,

T. = L- XS„L

T2 = L~ XS2L,

are the v different operations leaving q

fixed. Moreover, the v different operations

S\L, •
, S„L carry p into q. Vice versa,

if U is an operation of V carrying p into q then

UL~ X carries p into p and thus is one of the

operations S leaving p fixed; therefore

U = SL where 5 is one of the v operations

Sh • • •
, S,. Now let ffc

• • -
, qn be the

n different points of the class C = Cp and

let Li be one of the operations in T carrying

p into §i (« 1, • •
, »). Then all the

n - v operations of the table

S\L\,

SiL2 ,

, S,Li,

, SfLz,

SiL* , OyLn

are different from each other. Indeed each

individual line consists of different operations.

And all the operations of, say, the second

line must be different from those in the fifth

line since the former carry p into q2 and the

latter into the point qh =^ q 2 . Moreover

every operation of the group T is contained

in the table because any one of them carries

p into one of the points qi, • • •
, qn , say

into qt, and must therefore figure in the zth

line of our table.

This proves the relation jV = nv and thus

the fact that the multiplicity v is a divisor of

JV. We use the notation v — vv for the

multiplicity of a pole p; we know that it is the

same for every pole p in a given class C,

and it can therefore also be denoted in an

unambiguous manner by vc- The multi-
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plicity vc and the number nc of poles in the

class C are connected by the relation nc vc = JV.

After these preparations let us now con-

sider all pairs (S, p) consisting of an opera-

tion S t* I of the group T and a point p left

fixed by S—or, what is the same, of any pole

p and any operation S 9* I oi the group leav-

ing p fixed. This double description indi-

cates a double enumeration of those pairs.

On the one hand there are JV — 1 operations

S in the group that are different from /, and

each has two antipodic fixed points; hence

the number of the pairs equals 2(JV — 1).

On the other hand, for each pole p there are

vp
— 1 operations 5^ / in the group leaving p

fixed, and hence the number of the pairs

equals the sum

I (», - i)

extending over all poles p. We collect the

poles into classes C of equivalent poles and

thus obtain the following basic equation:

2(JV- 1) = ^nc(vc - 1)

c

where the sum to the right extends over all

classes C of poles. On taking the equation

nc vc = N into account, division by JV yields

the relation

JV " 2/ V *o/
2 ~N

What follows is a discussion of this equation.

The most trivial case is the one in which the

group T consists of the identity only; then

JV = 1, and there are no poles.

Leaving aside this trivial case we can say
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that JV is at least 2 and hence the left side

of our equation is at least 1, but less than 2.

The first fact makes it impossible for the

sum to the right to consist of one term only.

Hence there are at least two classes C. But

certainly not more than 3. For as each vc

is at least 2, the sum to the right would at

least be 2 if it consisted of 4 or more terms.

Consequently we have either two or three

classes of equivalent poles (Cases II and III

respectively)

.

II. In this case our equation gives

2 = i + i
JV v\ vi

or 2 = ^+*-
"1 "2

But two positive integers n\ = JV/vi,

n.2 = N/v 2 can have the sum 2 only if each

equals 1

:

v% = v% = JV; n% = «2 = 1.

Hence each of the two classes of equivalent

poles consists of one pole of multiplicity JV.

What we find here is the cyclic group of rota-

tions around a (vertical) axis of order JV.

HI. In this case we have

i + i + I = 1+ 2.

"1 "2 v3 JV

Arrange the multiplicities v in ascending

order, v x < v2 < v 3 . Not all three num-
bers v h v2 , Vi can be greater than 2; for then

the left side would give a result that is

fs % + M "KM * 1> contrary to the value

of the right side. Hence pi = 2,

i +^^ + 1
v2 vz 2 ^ JV

Not both numbers v2 , vs can be > 4, for

then the left sum would be < ^. Therefore

C2 = 2 or 3.

153



First alternative Illtf v x = v2 = 2,

N = 2vz .

Second alternative III 2 : v x = 2, v2 = 3;

1 = 1+2.

Set c 3 = n in Case IIIi. We have two

classes of poles of multiplicity 2 each con-

sisting of n poles, and one class consisting of

two poles of multiplicity n. It is easily seen

that these conditions are fulfilled by the

dihedral group D'n and by this group only.

For the second alternative III 2 we have,

in view of v 3 > v 2 = 3, the following three

possibilities:

V3 = 3, N= 12; v 3 = 4, X = 24;

v3 = 5, N = 60,

which we denote by T, W, P respectively.

T: There are two classes of 4 three-poles

each. It is clear that the poles of one class

must form a regular tetrahedron and those of

the other are their antipodes. We therefore

obtain the tetrahedral group. The 6 equiva-

lent two-poles are the projections from

onto the sphere of the centers of the 6 edges.

W: One class of 6 four-poles, forming the

corners of a regular octahedron; hence the

octahedral group. One class of 8 three-

poles (corresponding to the centers of the

sides); one class of 12 two-poles (correspond-

ing to the centers of the edges).

Case P: One class of 12 five-poles which

must form the corners of a regular icosa-

hedron. The 20 three-poles correspond to

the centers of the 20 sides, the 30 two-poles to

the centers of the 30 edges of the polyhedron.
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APPENDIX B

INCLUSION OF IMPROPER ROTATIONS (cf. p. 78).

If the finite group F* of rotations in 3-

space contains improper rotations let A be one

of them and Sh ,Sn be the proper opera-

tions in P*. The latter form a subgroup F,

and T* contains one line of proper opera-

tions and another line of improper operations

0) Si> " * *
j Sn,

(2) ASh , AS„.

It contains no other operations. For if T is

an improper operation in V* then A~ XT is

proper and hence identical with one of the

operations in the first line, say Si, and there-

fore T = AS,. Consequently the order of

T* is 2n, half of its operations are proper

forming the group T, the other half are

improper.

We now distinguish two cases according to

whether the improper operation ^ is or is

not contained in F*. In the first case we
choose Z f°r ^ and thus get Y* = V.

In the second case we may also write the

second line in the form

(2') Z^l, •
• ' ,

<^7"n

where the Ti are proper rotations. But in

this case all the Tt are different from all the

Si. Indeed were Ti = Sk then the group

T* would contain with %Ti = %Sk and 5*

also the element G3S»)j£T
s = Z-> contrary to

the hypothesis. Under these circumstances

the operations

(3)
5 ijl
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form a group T' of proper rotations of order

In in which T is contained as a subgroup of

index 2. Indeed the statement that the two

lines (3) form a group is, as one easily verifies,

equivalent to the other that the lines (1) and

(2') constitute a group (namely the group

r*). Thus T* is what was denoted in the

main text by TT, and we have thus proved

that the two methods mentioned there are

the only ones by which finite groups contain-

ing improper rotations may be constructed.
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tricity, 25

equivalent points, 150

Euclid, 17, 74
Eudoxus, 136
Euler, L., 149; his topological formula ("polyhedron

formula"), 89

exclusion principle, 134

Faistauer, A., 24

Faust, 45
Fedorow, 92

Fibonacci series, 72
field of numbers, 143

flowers, their symmetry, 58

fontenelle, 91

Frey, Dagobert, 16

Fugus, 34
future, see: past

Galen, 4
Galois, E., Galois group and Galois theory, 137, 142

Gauss, 120, 139, 142

general relativity theory, 132

genetic constitution, 37

genotype and phenotype, 126

gcnotypical and phenotypical inversion, 37

geometry, what is a — ?, 133

geometric automorphism, 130

geranium, 66

gliding axis, 109

Goethe, 51, 72

group of automorphisms, 42, 144; — of dilatations,

68; — of permutations, 135; — of transformations,

43; abstract group, 145; finite group of proper rota-

tions in 2 dimensions, 54, of proper and
improper rotations, 65; such groups having an
invariant lattice, 120; the same for 3 dimensions,

79, 149-154; 80, 120, 155-156; 120; finite group of

unimodular transformations in 2 dimensions, 107,

in 3 dimensions, 120.

Haeckel, Ernst, 60, 75, 88

Hambidce, J., 72

Harrison, R. G., 35

Helianthus maximus, 70, 73
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helix, 71

helladic, 12

Helmholtz, H., 18, 43, 128

heraldic symmetry, 8

Hermite, 121

Herzfeld, Ernst, 10

hexagonal symmetry, 63; — lattice or pattern, 83, 110

Hilbert, D., 90

historic asymmetry, 16

Hodler, F., 16

homogeneous linear transformation, 96

Homo sapiens, 30

honey-comb, 83, 90-91

Huxley, Julian S., 34

hypercomplex number system, 121

icosahedron, 74

identity, 41

indiscernible, 17, 127

infinite rapport, 47

invariant quadratic form, 106, 108; — quantities,

relations, etc., 133

inverse mapping, 41

inversion of left and right, 23; — of time, 24, 52;

genotypical and phenotypical—, 37; situs inversus,

30
irrationality of square root of two, 129

Jaeger, F. M., 29

Japp, F. R., 31

Jones, Owen, 113

Jordan, Pascual, 32

Kant, I., 21, 130

Kelvin, Lord, 93

Kepler, 76, 90

Klein, Felix, 133

Koenig, Samuel, 91

laevo-, see under: dextro-

lattice, 100; — basis, 100; — structure and metric

structure, 104; Chinese window — , 113; rectangu-

lar and diamond lattices, 102

Laue, Max von, 122-124; Laue interference pattern

or diagram, 124

law of rational indices, 121

left and right: polar opposites or not?, 17, 22; concern

a screw, 17; in paintings, 23

Leibniz, 17, 18, 20, 21, 27, 127

Leonardo da Vinci, 66, 99

linear independence of vectors, 94; linear transforma-

tion, homogeneous, 96, and non-homogeneous, 97

logarithmic spiral, 69
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longitudinal reflection, 50
Lorentz, H. A., 131; Lorentz group, 131

Lorenz, Alfred, 52
Ludwig, W., 26, 38

Mach, Ernst, 19

macroscopic and microscopic symmetry of crystals,

123

magnetism, positive and negative?, 20
Mainz cathedral, 56
Mann, Thomas, 64
mapping, 18, 41

Maraldi, 90, 91

Maschke, H. (and Maschke's theorem), 107
Medusa, 66; medusae, 63

metric ground form, 96; — structure and lattice

structure, 104

Michelangelo, 22
Minkowski, H., 90, 121

mitosis, 34

modul, 96

Monreale, 14
morphology, 109, 126

motion (in the geometric sense), 44
multiplication of a vector by a number, 94
music, formal elements of—, 52

mythical thinking, 22

Nautilus, 70

Needham, Joseph, 34

negative, see under: positive

Newton, 20, 27, 43

Nicomachean Ethics, 4

Nigc li, Paul, 122

objective statements, 128

octahedron, 74
ontogenesis of bilateral symmetry (and asymmetry),

33

Oppe, Paul, 24
optically active, 17

order of a group, 79

ornamental symmetry in one dimension, 48; in

two dimensions, 99-115

orthogonal transformation, 97
orthogonally equivalent, 99

parenchyma of maize, 87

particle (and wave), 25

past and future, 24, 132

Pasteur, 29-31

Pauli, W., 134

Penicillium glaucum, 30
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pentagonal symmetry in organic nature, 63

pentagram, 45

permutation, 134

phenotypical inversion, 37

phenylketonuria, 30

phyllotaxis, 72
phylogenesis of asymmetry, 33

physical automorphism, 129

Pisa Baptisterium, 55

Planck, Max, 133

planetary orbits and the regular polyhedra, 76

Plato, 8, 28, 73; his Timaeus, 74; Platonic solids, 73

polar axis, 33; — polyhedra, 78

polarity, see under: equivalence

pole, 109, 149; animal and vegetative poles of blastula,

33; magnetic poles, 19

Polya, G., 104

polyhedral groups, 78, 154

POLYKLEITOS, 3, 65

positive and negative electricity, 24; mag-

netism, 20

potentially infinite, 51

probability, 25

projective geometry, 132

proper and improper congruences, 43

prospective potency and significance, 35

Pythagoras' theorem, 96

quadratic forms, 96, 108; their arithmetical theory,

120

quantum physics, 25, 133

quincunx, 64, 103

racemic acid, 29

radiolarians, 76, 88

Raphael (Sistine Madonna, tapestry cartoons), 23

Reaumur, 91

rectangular lattice, 102

reflection, 4, — and rotation by 180°, 9, 77; — at

origin, 79; one-dimensional —, 47

regular point set, 122; — polygon, 73; — polyhedra,

73
relativity of direction, of left and right, of position, 20,

129; — of length, 128; relativity and symmetry, 17,

45, 127, 133, 144; theory of—, 127; special and

general theory of relativity, 132

Rembrandt, 23

rhythm and rhythmic symmetry, 47, especially in

music, 51

right, double meaning of the word, 22; see also under:

left

roots of an algebraic equation, 137

rotation, 44, 97, 149
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rotational symmetry, 5; — — of animals, 27; as

defined by a finite group of rotations, 53

San Apollinare (Ravenna), 13

San Marco (Venice), 14

S. Maria degli Angeli (Florence), 65

St. Matthew, 22

San Michele di Murano (Venice), 65
St. Pierre (Troyes, France), 58

seal stones, 10

sectio aurea, 72

Siegel, C. L., 121

similarity, 18, 42

sinister, 22, 127

Sistine Chapel, 22

situs inversus, 30

slip reflection, 50

space, 17; absolute or relative?, 21

space-time, 131

special relativity theory, 132

spectra, 133

Speiser, Andreas, 50, 52, 74

spherical symmetry, 25, 27

spin, 134

'spiral' symmetry, 70

spira mirabilis, 69

Stephan's dome (Vienna), 67

structure of space, 17-18, 130; — of space-time, 131;

structure-endowed entity, 144; causal —, 25, 132

subgroup of index 2, 44

Sumerians, 8, 9

swastika, 66
symmetry = harmony of proportions, 3, 16; —

defined by a group of automorphisms, 45, 133, 134;

— and equilibrium, 25; — and a priori statements,

126; the three stages of spherical, rotational and
bilateral symmetry in the animal kingdom, 27;

symmetry of crystals, 121-123; symmetry classes of

crystals, 122; — of flowers, 58; bilateral, dilatory,

etc. symmetry, see under: bilateral, dilatory, etc.

Tait, P. G., 73

tartaric acid, 29

tetrahedron, 74
tetrakaidekahedron, 92

theory of relativity, 1 27

Thompson, D'Arcy, 93

Thomson, William (Lord Kelvin), 93

time, absolute or relative?, 21; as the fourth dimen-

sion of the world, 1 30

Tiryns, 12

Tomb of the Triclinium, 13

Torcello, 12
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transformation, 18, 41

translation, 44, 98

translatory symmetry, 47

transversal reflection, 50

tripod, 66

triquetrum, 66

Troll, W., 51

Turritella duplicata, 68

Umklappung, 77

unimodular transformation, 100

unimodularly equivalent, 106

vector, 44; vector calculus, 93-94

vertical, 128

Vinca herbacea, 66

Vitruvius, 3, 65

Wickham, Anna, 5

WOHLER, 31

Wolfflin, H., 23, 24

world = space-time, 131

X-rays, 122
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